Click here for table of contents.
Back in 1995 the question of whether it was possible to get an extent of Stedman Triples using only common bobs was settled with Colin Wyld’s peals (CompLib 21261 CompLib 37681) and the Johnson/Saddleton peal (CompLib 10423). These peals were one-part compositions with many bobs, and are hard to conduct.
Since then there have been further compositions starting with my 4 irregular 10-part peals from June 1995 with 438 bobs (CompLib 28944 CompLib 28946) and 441 bobs (CompLib 28945 CompLib 28947) which have been rung over 200 times. A further development in 2012 was another 148 10-part peals with between 438 bobs (CompLib 31021) and 456 bobs CompLib 37714), including several exact two-part peals, some with at most 5 bobs in a row. More recently were my exact three-part peals of 2017 (CompLib 36006).
Since then I have come up with many more peals, though they are likely to be too hard to call for most conductors.
There are 840 places (at any six-end) where a bob could be called in an extent of Stedman Triples, which would give $2^{840} = 7.3×10^{253}$ possibilities. This is so huge that a direct search is impossible. Another approach is to cover all the rows with multiple shorter touches, each with a different starting row and returning to its start point (round blocks). You cannot cover all the rows with plain courses (the maximum is 40 of the required 60, but the remaining rows are unlinkable). You can cover all the rows with 84 B-blocks, 60 change round blocks of 10 bobs in a row. The problem then is to link the round blocks together into one big block. Omitting a bob from three B-blocks affecting the same 3 bells behind while the front 4 bells are in the same position can link them into one. That process would at best reduce the number of round blocks down from 84 in twos to give two unlinkable round blocks.
This is an example of the Q-set parity law. With Grandsire Triples using only common bobs there is only one lead head which brings up a row which leads to the proof of the impossibility of a extent of Grandsire Triples using just common bobs. Stedman Triples is made up of sixes, and with bobs and plains any row could appear in a six defined by one of six possible six-ends, three quick or three slow, which breaks the Q-set parity law restriction, similar to how in Cambridge Surprise Minor a row can appear either of two leads, the forward or backwards version, thus allowing a bobs-only 720.
B-blocks have a pair of bells dodging behind and two B-blocks can cover all the rows with a pair of bells dodging a particular way round. For each pair there are six possible complementary pairs of B-blocks, as illustrated by the six-ends below. The QS
is my convention for a quick six-end (to be followed by a slow six) and SQ
for a slow six-end.
2314567QS
3215467QS
3124567QS
1325467QS
1234567QS
2135467QS
2314567SQ
2134567SQ
3124567SQ
3215467SQ
1234567SQ
1325467SQ
The magic blocks used in the Wyld and Johnson/Saddleton peals have the same rows as 10 B-blocks but in five round blocks, breaking the parity barrier. This is my compact form of showing them, where -
means a bob and P
means a plain after the six-end, and the *1(1)
means the block is rung once, and there is one version of it in the peal (useful for multi-part peals).
2314567QS---------P------P--P*1(1)
2743516QS---------P------P--P*1(1)
2176534QS---------P------P--P*1(1)
2461573QS---------P------P--P*1(1)
2637541QS---------P------P--P*1(1)
Notice how they are a five-part set, with bells 2 and 5 fixed and 3,7,6,1,4 rotating.
There are then 10 B-blocks which are the complementary pairs of those first 10 blocks, and 64 remaining B-blocks, arranged in 32 complementary pairs. There are therefore $6^{32}=7.96×10^{18}$ choices for those pairs, and some choices give enough Q-sets to link everything together. This gives 79 round blocks with 825 bobs, which perhaps could be reduced to one block using 39 Q-sets of 3 omits.
The sixes can be rearranged into 79 complete B-blocks by chopping them up and joining them together without changing the type of the six. There are 64 B-blocks in complementary pairs, 10 B-blocks which partner the magic blocks, and 5 B-blocks which can be obtained from the magic blocks. The other sixes for the other 5 B-blocks cannot by obtained as they are disrupted by the sixes between the P--P
sequences of calls.
There have been further minor developments in magic block peals. Colin Wyld found that he needed an extra Q-set of omits to link the blocks together, so the peal took $840-5×3-3×(79-1)/2-3=705$ bobs. With a suitable choice of B-blocks the extra Q-set of omits is not needed and a peal of 708 bobs is possible, for example by bobbing some Q-sets of the first Johnson/Saddleton peal to give CompLib 37705. By bobbing one Q-set of Wyld’s No. 1 then that can also be increased to 708 bobs (CompLib 92949).
With more care then the omits can be all isolated, as shown by CompLib 46033 (rung on 14 March 2019) and CompLib 46069 where there are just 8 omits after quick sixes (5 essential for the magic blocks plus 1 Q-set) and 124 after slow sixes. From my searches I do not think it is possible to reduce this to the 5 essential omits after quick sixes, thus answering Alan Burbidge’s question in ‘Stedman Triples and Similar Fascinations’. These peals can be reversed if required, putting most of the omits after the quick sixes and a few after the slow sixes.
The first bobs-only peal to be rung had 579 bobs. Shortly afterwards, Philip Saddleton reported that he had reduced that to 576 bobs, but did not publish it. I I have now composed a magic block peal with 576 bobs, CompLib 59746, which I believe to be the minimum on the plan.
It is not possible to get a peal using the magic blocks without at least one run of 9 bobs, for example CompLib 91621.
In classifying bobs-only peals it is useful to have some statistics which do not change with the choice of Q-sets plained or bobbed or the choice of pairs of complementary B-blocks.
In this article, the signature of the peal is obtained by bobbing all Q-sets, then looking at the round blocks. Some might be B-blocks, but others would contain blocks with some plains. The magic blocks have a signature of 10:5+15, which means that the contents of 10 B-blocks are rearranged and linked into 5 round blocks using 15 plains, giving $84-10+5=79$ round blocks including the untouched B-blocks.
When comparing peals other statistics can determine their merit:
Recently I discovered some more peals, which although looking similar to magic block peals are in fact different. Some are based on these 3 sets of blocks, giving 4 sets of blocks with 79 complete B-blocks.
2314567QS---------P------P--P*1(1)
2471536QS---------P------P--P*1(1)
2736514QS---------P------P--P*1(1)
2167543QS---------P------P--P*1(1)
2643571QS---------P------P--P*1(1)
This looks similar to the magic blocks, but is different, and generates different peals. There is a peal with only 5 plains (omits) after a quick six, CompLib 92794, though with 2 double omits. To avoid double omits however requires at least 18 plains after a quick six. There are peals from 576 bobs (CompLib 92793) to 708 bobs.
These blocks are clearly different as two of the blocks have 9,2,6 bobs in a run rather than 9,6,2.
2314567QS---------P------P--P*1(1)
2471536QS---------P------P--P*1(1)
2736514QS---------P------P--P*1(1)
5246317QS--------P--P------P-*1(1)
5217634QS--------P--P------P-*1(1)
There is a peal, CompLib 91638 which has only 7 omits after a quick six, the minimum using these blocks, and isolated omits. A similar peal with 7 omits after a slow six is CompLib 84678 There is also another peal, CompLib 90948 with a maximum of 6 bobs in a run, no 5-bob sets, and only 3 3-bob sets and 36 single bobs, so most of the time the alternation between quick and slow work is maintained.
2314567QS---------P------P--P*1(1)
2743516QS---------P------P--P*1(1)
2176534QS---------P------P--P*1(1)
5241637QS--------P--P------P-*1(1)
5236714QS--------P--P------P-*1(1)
This gives another peal, CompLib 92964 with a maximum of 6 bobs in a run, two 5-bob sets, and two 3-bob sets and 37 single bobs. A 579 bob peal is CompLib 84857. CompLib 90545 and CompLib 90546 have only 7 omits after a quick six.
There are some more peals based on combining all the rows of several B-blocks into larger round blocks. If all the sixes were separated then for these peals it would be possible to arrange them into 78 whole B-blocks with some sixes left over, so in the peal all the pieces of all 78 B-blocks are present and complete. This is for the convenience of classifying the peals as the choice of which pair of B-blocks with the same bells behind does not affect this statistic, neither does adding or removing 3 bobs in a Q-set [where the same 3 bells are affected by the call and the other bells are in the same position at each call]. Here are the 4 sets of blocks.
Here is the first block.
2314567QS---------P--------P-P--------P---------P-P--------PP-------P---------PP-------PP---------PPP--------PP------P---------PP*1(1)
Rotated version of that block: CompLib 90582 Links the contents of 12 whole B-blocks into 1 big block using 21 plains, giving $84-12+1=73$ round blocks including the untouched B-blocks. This leaves 12 more B-blocks as the pairs of those, and 60 paired B-blocks, where each pair can be chosen from one of six, making assembly of the peal quite easy. There are then 73 round blocks to link. By choosing the B-block pairs carefully extra Q-sets can be found which can be plained to reduce the total number of bobs.
There are 73 round blocks formed using 21 plains, so there is the chance of finding $72/2=36$ Q-sets to link them into one block, the peal, which would add another $36×3=108$ plains, so 129 plains and hence 711 bobs, but I have not found a peal using this block with that many bobs.
2314567QS---------P------PP---------PPP------P--P--------P--------P---------PP---------PP*1(1)
2341576QS---------P------P--P*1(1)
2761534QS--------P-------P-PP*1(1)
This takes the contents of 12 whole B-blocks and puts them into 3 round blocks using 21 plains. There are then 12 B-blocks which are pairs of those original blocks before they were reconstituted, and 60 paired remaining B-blocks.
An upper limit of bobs in a peal on this plan is as follows: 21 plains, 75 blocks, so a possible maximum of $840-21-3×(84-12+3-1)/2=708$ bobs.
2314567QS---------P--------P---------PP---------P-P------PP*1(1)
3671245QS---------P------P--P*1(1)
3517246QS--------P-------P-PP*1(1)
2314675QS--------P--P------P-*1(1)
Upper limit of possible bobs: $840-18-3×(84-11+4-1)/2=708$ bobs.
Instead of minimising the number of bobs, we can choose to reduce the number of sets of odd numbers of bobs in a run. This helps maintain the alternation of quick and slow work for the bells. Doing that gives the following peal, where the only runs of an odd number of bobs are single bobs, and there are only 18 of them. The 4-bob and 6-bob sets come at the start of the slow for some bell, whereas the 98 of the runs of 2 bobs are in quick, 23 are in slow. The treble does not have any odd bobs behind, just 0,2 or 6 bobs.
I think this peal would not feel like a Thurstans twin-bob peal as there are so many more bobs, but might be slightly easier on the band than other bobs-only peals.
2314567QS---------P-------P---------P-P------PP---------P-P*1(1)
2736514QS---------P------P--P*1(1)
2174563QS--------P-------P-PP*1(1)
5263417QS--------P--P------P-*1(1)
I have found 8 different ways of rearranging the contents of a whole number of B-blocks to give an odd number of round blocks, subject to the 77 complete B-block restriction.
2314567QS---------P--------P---------P-P---------P--------P---------PP---------P--------P--------P---------PP*1(1)
2173465QS-------PP----PP--------PP--PP-*1(1)
2314567QS---------P--------P---------P-P---------P--------P---------PP---------P--------P--------P---------PP*1(1)
3517246QS--------PP------PP--------PPPP*1(1)
Both have the signature of linking 13 B-blocks into two blocks using 21 plains, so giving 73 round blocks in total. However, I have not found a peal using either of these sets of blocks.
2314567QS---------P--------P---------P-------P--P--------P---------PP*1(1)
2461573QS---------P------PPP--------PPP*1(1)
2416537QS---------P------P--P*1(1)
2743516QS---------P------P--P*1(1)
Signature of 13 B-blocks into four blocks using 21 plains, giving 75 round blocks in total.
2314567QS---------P--------P---------P-------P--P--------P---------PP*1(1)
5274631QS--------PPP--------PPP------P-*1(1)
2617534QS---------P------P--P*1(1)
5271364QS--------P--P------P-*1(1)
Signature of 13 B-blocks into four blocks using 21 plains, giving 75 round blocks in total.
2314567QS---------P--------P---------PP---------P--------P---------PP*1(1)
4721536QS---------P------P--P*1(1)
4361572QS---------P------P--P*1(1)
5416732QS--------P--P------P-*1(1)
5172346QS-------P---P-----PP-*1(1)
No peal
2314567QS---------P-----P---------PP---------P--------P---------P---P*1(1)
2764513QS---------P------P--P*1(1)
5246317QS--------P--P------P-*1(1)
5241763QS--------P--P------P-*1(1)
1465327QS-------PP--------PP-*1(1)
Signature of 14 B-blocks into five blocks using 21 plains, giving 75 round blocks in total.
2314567QS---------P-----P---------PP---------P--------P---------P---P*1(1)
2674531QS---------P------P--P*1(1)
5241637QS--------P--P------P-*1(1)
5247361QS--------P--P------P-*1(1)
3146527QS--------PP--------PP*1(1)
Signature of 14 B-blocks into five blocks using 21 plains, giving 75 round blocks in total.
2314567QS---------PP---------P--------P---------PP---------P--------P*1(1)
7356124QS---------P------P--P*1(1)
7426153QS---------P------P--P*1(1)
1765423QS--------P--P------P-*1(1)
1652374QS-------P---P-----PP-*1(1)
No peal
I have found 24 different ways of rearranging the contents of a whole number of B-blocks to give an odd number of round blocks, where the peal can have 76 complete B-blocks extracted from the sixes.
2314567QS---------P--------P---P--PP--P---------P--P-----PP---------P-P---------P-------P*1(1)
6352741QS---------P--P---------P--PP--P*1(1)
1547362QS--------P--P---PP--------PP-P-*1(1)
4371526QS---------P------P--P*1(1)
3265714QS--------P--P------P-*1(1)
This arranges the contents of 18 B-blocks into 5 round blocks using 33 plains, giving 71 round blocks in total.
2314567QS---------P--------P---------P-PP-------PPP------P-P---------P--------P--------P---------PPP-------P---------P-PP-------P--------P---------PP*1(1)
This arranges the contents of 14 B-blocks into 1 round block using 24 plains, giving 71 round blocks in total. No peal.
2314567QS---------P--------P-P--------P---------PP-------PP---------P-P-------P---------PPP---------P------PP--------PPP--------P---------P-P-------P*1(1)
This arranges the contents of 14 B-blocks into 1 round block using 24 plains, giving 71 round blocks in total. This set of blocks has an upper limit of 711 bobs for a peal, and such a peal can be found. 71 blocks to be linked by 35 Q-sets, adding another 105 plains, so giving 129 plains in total.
This core block can be examined. Note how bells 2 and 3 remain together in the front 5 places.
2314567QS---------P--------P---------P-------P---------P-P---------PP*1(1)
5431276QS---------P--P--P---------PP--P*1(1)
4216573QS--------P--P---PP--------PP-P-*1(1)
4612753QS--------P--P--P---------P--PP-*1(1)
4561273QS---------P------P--P*1(1)
4721653QS---------P------P--P*1(1)
No peal
2314567QS---------P--------P---------P-------P---------P-P---------PP*1(1)
7351426QS---------P--P--P---------PP--P*1(1)
7641523QS---------P--P--P---------PP--P*1(1)
4216573QS--------P--P---PP--------PP-P-*1(1)
7415326QS--------P--P------P-*1(1)
7514623QS--------P--P------P-*1(1)
No peal
2314567QS---------P-----P---------PP---------P--------P---------P---P*1(1)
3274561QS---------P--P--P---------PPPP--------PPP*1(1)
2145637QS--------P--P--P---------P--PP-*1(1)
2654137QS---------P------P--P*1(1)
2541367QS--------P--P------P-*1(1)
3547261QS--------P--P------P-*1(1)
This arranges the contents of 19 B-blocks into 6 round blocks using 33 plains, giving 71 round blocks in total. It does give a peal.
2314567QS---------P-----P---------PP---------P--------P---------P---P*1(1)
6524713QS---------P--P--P---------PP--P*1(1)
6742513QS--------P--P--P---------P--PP-*1(1)
2145763QS--------P--PPP--------PP----P-*1(1)
3264517QS---------P------P--P*1(1)
2541367QS--------P--P------P-*1(1)
Peal.
2314567QS---------P---P---------PP--P---------P-P---------PP---------P--------P*1(1)
4176235QS--------P--P--P---------P--PP-*1(1)
6273541QS--------P--PPP--------PP----P-*1(1)
6537241QS---------P------P--P*1(1)
5647231QS---------P------P--P*1(1)
6372145QS--------P--P------P-*1(1)
2314567QS---------P---P---------PP--P---------P-P---------PP---------P--------P*1(1)
4517632QS---------P--PPP--------PPP---------PP--P*1(1)
6372145QS--------P--P------P-*1(1)
4176235QS--------P--P------P-*1(1)
1375642QS--------P--P------P-*1(1)
4671532QS--------P--P------P-*1(1)
peal
2314567QS---------P-----P------P--PP--P*1(1)
4312576QS---------P--P---------P--PP--P*1(1)
7356124QS---------P--P---------P--PP--P*1(1)
6357142QS---------P--P---------P--PP--P*1(1)
1324657QS---------P------P--P*1(1)
1754623QS---------P------P--P*1(1)
6142753QS--------P--P------P-*1(1)
peal
2314567QS---------P---P------P--P--P--P*1(1)
2315476QS---------PP---------P--P--P--P*1(1)
3217645QS---------PP---------P--P--P--P*1(1)
3216754QS---------PP---------P--P--P--P*1(1)
6514327QS---------P------P--P*1(1)
6274351QS---------P------P--P*1(1)
3647521QS--------P--P------P-*1(1)
This arranges the contents of 18 B-blocks into 7 round blocks using 33 plains, giving 73 round blocks in total.
2314567QS---------P---P------P--------P---------PP---------P--------P*1(1)
6254317QS---------P------P--P*1(1)
6714352QS---------P------P--P*1(1)
3645712QS--------P--P------P-*1(1)
2743165QS-------PP--------PP-*1(1)
This arranges the contents of 14 B-blocks into 5 round blocks using 21 plains, giving 75 round blocks in total.
2314567QS---------P---P------P--------P---------PP---------P--------P*1(1)
6514327QS---------P------P--P*1(1)
6274351QS---------P------P--P*1(1)
3647521QS--------P--P------P-*1(1)
1274365QS--------PP--------PP*1(1)
This arranges the contents of 14 B-blocks into 5 round blocks using 21 plains, giving 75 round blocks in total.
With all the sets of blocks I have given I have tried to avoid duplicates by arranging them in a canonical form.
For each block, if it is a round block, choose a rotation to give a start which is a quick six. Choose a rotation with the longest runs of bobs first (lexical comparison, -
before P
). If the block is multi-part (so two rotations can be the same), choose a start with biggest start when the row is reversed (so 2134567
is before 2136745
). When there are multiple blocks, rearrange the order of the blocks so the longest block is first, then if equal do by starting six as above. Now consider renumbering the blocks so that the first block is 2134567QS
and sort as above. Also try renumbering so another block of the same length is 2134567QS
. Also check for reversals by taking each starting six, finding the six-head, then swap 1 & 2 to keep it in course, and reverse the block, then do all the above. See if it is before the best non-reversed version.
I have not given peals for some of the blocks as I did not want to clutter up CompLib with similar peals, but I can add them if anyone is interested. Here are 14 ways of getting an odd number of blocks.
This rearranges the contents of 15 B-blocks into 2 round blocks, giving 71 round blocks.
2314567QS---------P--------P--------P--------P---------P-P--------PP-------P---------PPPP--------P---------PP---------P--------PP*1(1)
2761534QS--------PP------PP--------PPPP*1(1)
no peal
These all rearrange the contents of 19 B-blocks into 6 round blocks, giving 71 round blocks.
2314567QS---------P--------P---------P-------P--P--------P---------PP*1(1)
2657431QS---------P---PP--------PP-P--P*1(1)
4173562QS--------P--P--P---------P--PP-*1(1)
5176432QS--------P--P--P---------P--PP-*1(1)
4537162QS---------P------P--P*1(1)
5467132QS---------P------P--P*1(1)
peal
2314567QS---------P--------P---------P-------P--P--------P---------PP*1(1)
2657431QS---------P---PP--------PP-P--P*1(1)
6217435QS---------P--P--P---------PP--P*1(1)
2574361QS--------P--P--P---------P--PP-*1(1)
6471235QS--------P--P------P-*1(1)
2475631QS--------P--P------P-*1(1)
no peal
2314567QS---------P--------P--P-------P---------P-P---------P-------P*1(1)
6527143QS---------PP---------P--P--P--P*1(1)
5623471QS---------PP---------P--P--P--P*1(1)
6172543QS--------P--PP-P-------P-P---P-*1(1)
6521734QS---------P------P--P*1(1)
3245617QS--------P--P------P-*1(1)
peal
2314567QS---------P--------P--P-------P---------P-P---------P-------P*1(1)
7621534QS---------P--P---------P--PP--P*1(1)
4653271QS---------P--P---------P--PP--P*1(1)
6172543QS--------P--PP-P-------P-P---P-*1(1)
6527143QS---------P------P--P*1(1)
4235671QS--------P--P------P-*1(1)
2314567QS---------P--------P--P-------P---------P-P---------P-------P*1(1)
7621534QS---------P--P---------P--PP--P*1(1)
4653271QS---------P--P---------P--PP--P*1(1)
6172543QS--------P--PP-P-------P-P---P-*1(1)
6527143QS---------P------P--P*1(1)
4235671QS--------P--P------P-*1(1)
peal
2314567QS---------P---P------P--------P---------PP---------P--------P*1(1)
5634712QS---------P--P--P---------PP--P*1(1)
2354617QS---------PPP--------PP----P--P*1(1)
5743612QS--------P--P--P---------P--PP-*1(1)
3214657QS---------P------P--P*1(1)
3146752QS--------P--P------P-*1(1)
2314567QS---------P---P------P--------P---------PP---------P--------P*1(1)
7543621QS--------P--PP---------PPP--------PPP--P-*1(1)
2374651QS---------P--P--P---------PP--P*1(1)
3214657QS---------P------P--P*1(1)
3564127QS---------P------P--P*1(1)
2647351QS--------P--P------P-*1(1)
peal
2314567QS---------P---PP---------P--P--P--------P---------PP---------P--------P*1(1)
6745123QS--------P--P--P---------PPP--------PPPP-*1(1)
3214657QS---------P------P--P*1(1)
3564127QS---------P------P--P*1(1)
1624753QS---------P------P--P*1(1)
6154723QS---------P------P--P*1(1)
2314567QS---------P--P---------P------P---------P--P---------P------P*1(1)
6357142QS---------P-----P------P--PP--P*1(1)
7356124QS---------P--P---------P--PP--P*1(1)
4523671QS--------P--PPP--------PP----P-*1(1)
4563217QS--------P--P------P-*1(1)
4517326QS--------P--P------P-*1(1)
no peal
2314567QS---------P--P---------P------P---------P--P---------P------P*1(1)
7356124QS---------P-----P------P--PP--P*1(1)
6357142QS---------P--P---------P--PP--P*1(1)
2543761QS--------P--PPP--------PP----P-*1(1)
2516347QS--------P--P------P-*1(1)
2573416QS--------P--P------P-*1(1)
no peal
2314567QS---------P---P--P---------P--PP--------P---------PP---------P--------P*1(1)
5374126QS---------P--P--P---------PP--P*1(1)
3146527QS--------PPP--------PPP------P-*1(1)
3214657QS---------P------P--P*1(1)
3564127QS---------P------P--P*1(1)
5147326QS--------P--P------P-*1(1)
I have found 44 sets of blocks of getting an odd number of blocks. so far, where the sixes from each set (and the remaining B-blocks) can be rearranged into 74 complete B-blocks.
2314567QS---------P--------P------P---P---------P-----P---------P---P---------P-----P--PP---------P--P-----P---P------P*1(1)
7623541QS--------P-----P---------P---P---------P--PP--------PP-P---------P---P-*1(1)
6571324QS-----P---P-----P---P*1(1)
2314567QS---------P--------P-P--------P---------P-P--------PP-------P---------PP-------PP---------PPP--------PP------P---------PP*1(1)
2541367QS--------P-------P---------P-P---------P-------P---------P-P-*1(1)
2456317QS-------P-P-------P-P*1(1)
This set of blocks includes the 12:1+21 block block from 78 complete B-blocks, so the other two blocks link 8 B-blocks into 2 blocks.
2314567QS---------P--------P-P--------P---------P-P--------PP-------P---------PP-------PP---------PPP--------PP------P---------PP*1(1)
2547316QS---------P--------P---------PP---------P--------P---------PP*1(1)
3271546QS--------PP--------PP*1(1)
This set of blocks includes the 12:1+21 block block from 78 complete B-blocks, so the other two blocks link 8 B-blocks into 2 blocks.
2314567QS---------P--------P-P--------P---------P-P--------PP-------P---------PP-------PP---------PPP--------PP------P---------PP*1(1)
1632547QS---------P--------P---------PP---------P--------P---------PP*1(1)
6245137QS-------PP--------PP-*1(1)
no peal
2314567QS---------P--------PP---------P--P---------P--PP-PP---------P-P---------P-------P*1(1)
1356742QS---------P--P--PP--P--P---------P--PP--------PP--P*1(1)
1374562QS---------P--P--PP--P------P--------PP--P*1(1)
1547362QS--------P--P---PP--------PP-P-*1(1)
3265714QS--------P--P------P-*1(1)
no peal
2314567QS---------P-----P---------PP---------P--------P---------P---P*1(1)
5236147QS---------P--P--PP--P--P---------P--PP--------PP--P*1(1)
7163254QS--------P--PP--------P------P--PP--P--P-*1(1)
7236154QS---------P----PP--------PPP--P*1(1)
7214356QS---------P--P---------P--PP--P*1(1)
2541367QS--------P--P------P-*1(1)
2314567QS---------P--------P---------P---P---------P------P---------P--P---------P------P--------P---------PP*1(1)
1356427QS---------P--P---------P--PP--P*1(1)
6351472QS---------P--P---------P--PP--P*1(1)
5246317QS--------PP--------PP*1(1)
3421576QS--------PP--------PP*1(1)
2314567QS---------P--------P--------PPP---------P--------P-------PPP--------P---------PPP--------PP------P---------PP---------PP--------P--------P-PP*1(1)
5213647QS--------PP--------PP*1(1)
5234617QS--------PP--------PP*1(1)
2314567QS---------P------PP---------PPP------P--P--------P--------P---------PP---------PP*1(1)
2547316QS---------P--------P---------PP---------P--------P---------PP*1(1)
2341576QS---------P------P--P*1(1)
2761534QS--------P-------P-PP*1(1)
5371246QS--------PP--------PP*1(1)
2314567QS---------P-----P---------P---P---------P--P---------P------P*1(1)
7356124QS---------P--P---------P------P---------P--P---------P------P*1(1)
6173245QS--------P--PPP--------PP----P-*1(1)
1247635QS---------P------P--P*1(1)
6174532QS--------P--P------P-*1(1)
3146527QS--------PP--------PP*1(1)
2314567QS---------P---PP--P---------P--P--------P---------PP---------P--------P*1(1)
3214657QS---------P--P---------P------P---------P--P---------P------P*1(1)
5267143QS---------P--P---------P--PP--P*1(1)
2145637QS--------PP--------PP*1(1)
2743165QS-------PP--------PP-*1(1)
2314567QS---------P--------P---------P---P---------P--PP--P--------P---------PP*1(1)
1356427QS---------P--P---------P--PP--P*1(1)
3542716QS---------P------P--P*1(1)
6351472QS---------P------P--P*1(1)
1465327QS--------P--P------P-*1(1)
3724516QS--------P--P------P-*1(1)
5246317QS--------PP--------PP*1(1)
2314567QS---------P--------P---------P---P---------P--PP--P--------P---------PP*1(1)
6351472QS---------P--P---------P--PP--P*1(1)
3456127QS---------P------P--P*1(1)
7342516QS---------P------P--P*1(1)
3165427QS--------P--P------P-*1(1)
2574361QS--------P--P------P-*1(1)
5246317QS--------PP--------PP*1(1)
2314567QS---------P--------P---------P---P--P---------PP--P--------P---------PP*1(1)
3175624QS--------P--P--P---------P--PP-*1(1)
3217564QS---------P------P--P*1(1)
3657124QS---------P------P--P*1(1)
3571264QS--------P--P------P-*1(1)
2574361QS--------P--P------P-*1(1)
5246317QS--------PP--------PP*1(1)
2314567QS---------P--------P---------P-P---------P--P--P--P--------P---------PP*1(1)
3241675QS---------PP---------P--P--P--P*1(1)
1236457QS---------P------P--P*1(1)
2345716QS---------P------P--P*1(1)
1463257QS--------P--P------P-*1(1)
2574361QS--------P--P------P-*1(1)
2463517QS-------PP--------PP-*1(1)
2314567QS---------P--------P---------P-P---------P--P--P--P--------P---------PP*1(1)
3246157QS---------PP---------P--P--P--P*1(1)
7325416QS---------P------P--P*1(1)
3241675QS---------P------P--P*1(1)
3164257QS--------P--P------P-*1(1)
7452316QS--------P--P------P-*1(1)
2463517QS-------PP--------PP-*1(1)
2314567QS---------P--------P---------P-P--P---------P--P--P--------P---------PP*1(1)
6137254QS---------P--P--P---------PP--P*1(1)
3571264QS--------P--P------P-*1(1)
6273154QS--------P--P------P-*1(1)
2574361QS--------P--P------P-*1(1)
6372451QS--------P--P------P-*1(1)
2463517QS-------PP--------PP-*1(1)
2314567QS---------P--------P---------P-P--P---------P--P--P--------P---------PP*1(1)
6372451QS--------P--P--P---------P--PP-*1(1)
2157463QS---------P------P--P*1(1)
1267453QS---------P------P--P*1(1)
2475163QS--------P--P------P-*1(1)
2574361QS--------P--P------P-*1(1)
2463517QS-------PP--------PP-*1(1)
2314567QS---------P-------P---------P--P---------P--P--P--P-------P---------P-P*1(1)
4213675QS---------PP---------P--P--P--P*1(1)
3246157QS---------P------P--P*1(1)
2415736QS---------P------P--P*1(1)
3164257QS--------P--P------P-*1(1)
2571463QS--------P--P------P-*1(1)
2164537QS------P-P-------P-P-*1(1)
2314567QS---------P-------P---------P--P---------P--P--P--P-------P---------P-P*1(1)
4216357QS---------PP---------P--P--P--P*1(1)
7425136QS---------P------P--P*1(1)
4213675QS---------P------P--P*1(1)
4361257QS--------P--P------P-*1(1)
7152436QS--------P--P------P-*1(1)
2164537QS------P-P-------P-P-*1(1)
2314567QS---------P-------P---------P--P--P---------P--P--P-------P---------P-P*1(1)
6472153QS--------P--P--P---------P--PP-*1(1)
2357164QS---------P------P--P*1(1)
3267154QS---------P------P--P*1(1)
2175364QS--------P--P------P-*1(1)
2571463QS--------P--P------P-*1(1)
2164537QS------P-P-------P-P-*1(1)
2314567QS---------P-----P------P------P---------P--P---------P------P*1(1)
7356124QS---------P--P---------P--PP--P*1(1)
6357142QS---------P--P---------P--PP--P*1(1)
6173245QS--------P--P------P-*1(1)
6123754QS--------P--P------P-*1(1)
6154372QS--------P--P------P-*1(1)
3146527QS--------PP--------PP*1(1)
2314567QS---------P---P------P--------P---------PP---------P--------P*1(1)
3214657QS---------P--P---------P--PP--P*1(1)
5267143QS---------P--P---------P--PP--P*1(1)
4213675QS---------P------P--P*1(1)
2165734QS---------P------P--P*1(1)
2756134QS--------P--P------P-*1(1)
2743165QS-------PP--------PP-*1(1)
2314567QS---------P---P------P--------P---------PP---------P--------P*1(1)
3214657QS---------P--P--P---------PP--P*1(1)
3764152QS---------P--P--P---------PP--P*1(1)
1542637QS--------P--P------P-*1(1)
3146752QS--------P--P------P-*1(1)
6547132QS--------P--P------P-*1(1)
2743165QS-------PP--------PP-*1(1)
2314567QS---------P---P--P---------P--PP--------P---------PP---------P--------P*1(1)
3214657QS---------P--P--P---------PP--P*1(1)
7134256QS---------P------P--P*1(1)
1754236QS---------P------P--P*1(1)
1542637QS--------P--P------P-*1(1)
1245736QS--------P--P------P-*1(1)
2743165QS-------PP--------PP-*1(1)
2314567QS---------P---PP--P---------P--P--------P---------PP---------P--------P*1(1)
3214657QS---------P--P---------P--PP--P*1(1)
2613475QS---------P------P--P*1(1)
5267143QS---------P------P--P*1(1)
2431675QS--------P--P------P-*1(1)
7156234QS--------P--P------P-*1(1)
2743165QS-------PP--------PP-*1(1)
2314567QS---------P-----P------P--PP--P*1(1)
6357142QS---------P--P---------P--PP--P*1(1)
1324657QS---------P------P--P*1(1)
4312576QS---------P------P--P*1(1)
3156724QS---------P------P--P*1(1)
1754623QS---------P------P--P*1(1)
2541367QS--------P--P------P-*1(1)
3765124QS--------P--P------P-*1(1)
6142753QS--------P--P------P-*1(1)
2314567QS---------P-----P------P--PP--P*1(1)
6357142QS---------P--P---------P--PP--P*1(1)
4312576QS---------P------P--P*1(1)
3156724QS---------P------P--P*1(1)
2541367QS--------P--P------P-*1(1)
6173245QS--------P--P------P-*1(1)
6123754QS--------P--P------P-*1(1)
3765124QS--------P--P------P-*1(1)
6154372QS--------P--P------P-*1(1)
2314567QS---------P-----P------P--PP--P*1(1)
7356124QS---------P--P---------P--PP--P*1(1)
1324657QS---------P------P--P*1(1)
3512476QS---------P------P--P*1(1)
1754623QS---------P------P--P*1(1)
6357142QS---------P------P--P*1(1)
3421576QS--------P--P------P-*1(1)
7165324QS--------P--P------P-*1(1)
6142753QS--------P--P------P-*1(1)
2314567QS---------P-----P------P--PP--P*1(1)
7356124QS---------P--P---------P--PP--P*1(1)
3512476QS---------P------P--P*1(1)
6357142QS---------P------P--P*1(1)
3421576QS--------P--P------P-*1(1)
6173245QS--------P--P------P-*1(1)
6123754QS--------P--P------P-*1(1)
7165324QS--------P--P------P-*1(1)
6154372QS--------P--P------P-*1(1)
2314567QS---------P---P------P--P--P--P*1(1)
3216754QS---------PP---------P--P--P--P*1(1)
4325176QS---------P------P--P*1(1)
3217645QS---------P------P--P*1(1)
4152376QS--------P--P------P-*1(1)
3621475QS--------P--P------P-*1(1)
3761254QS--------P--P------P-*1(1)
3657124QS--------P--P------P-*1(1)
3675142QS--------P--P------P-*1(1)
2314567QS---------P---P------P--P--P--P*1(1)
3216754QS---------PP---------P--P--P--P*1(1)
6514327QS---------P------P--P*1(1)
4325176QS---------P------P--P*1(1)
3217645QS---------P------P--P*1(1)
6274351QS---------P------P--P*1(1)
4152376QS--------P--P------P-*1(1)
3761254QS--------P--P------P-*1(1)
3647521QS--------P--P------P-*1(1)
2314567QS---------P---P------P--P--P--P*1(1)
3217645QS---------PP---------P--P--P--P*1(1)
2315476QS---------P------P--P*1(1)
7236154QS---------P------P--P*1(1)
2541367QS--------P--P------P-*1(1)
3621475QS--------P--P------P-*1(1)
7163254QS--------P--P------P-*1(1)
3657124QS--------P--P------P-*1(1)
3675142QS--------P--P------P-*1(1)
2314567QS---------P---P------P--P--P--P*1(1)
3217645QS---------PP---------P--P--P--P*1(1)
6514327QS---------P------P--P*1(1)
2315476QS---------P------P--P*1(1)
7236154QS---------P------P--P*1(1)
6274351QS---------P------P--P*1(1)
2541367QS--------P--P------P-*1(1)
7163254QS--------P--P------P-*1(1)
3647521QS--------P--P------P-*1(1)
2314567QS---------P--P---------P--PP--P*1(1)
2341576QS---------P------P--P*1(1)
6351724QS---------P------P--P*1(1)
2736514QS---------P------P--P*1(1)
6357142QS---------P------P--P*1(1)
4632571QS---------P------P--P*1(1)
2543617QS--------P--P------P-*1(1)
5216374QS--------P--P------P-*1(1)
6715324QS--------P--P------P-*1(1)
4523671QS--------P--P------P-*1(1)
2314567QS---------P--P---------P--PP--P*1(1)
4312576QS---------P------P--P*1(1)
3156724QS---------P------P--P*1(1)
5721463QS---------P------P--P*1(1)
6357142QS---------P------P--P*1(1)
5376421QS---------P------P--P*1(1)
2541367QS--------P--P------P-*1(1)
3765124QS--------P--P------P-*1(1)
4516723QS--------P--P------P-*1(1)
4523671QS--------P--P------P-*1(1)
2314567QS---------P--P--P---------PP--P*1(1)
1643527QS--------P--P---P------P--P--P-*1(1)
3274561QS---------P------P--P*1(1)
3654721QS---------P------P--P*1(1)
2541367QS--------P--P------P-*1(1)
3741526QS--------P--P------P-*1(1)
3714562QS--------P--P------P-*1(1)
3547261QS--------P--P------P-*1(1)
3765241QS--------P--P------P-*1(1)
2314567QS---------P--P--P---------PP--P*1(1)
2541367QS--------P--P-----P------P--PP-*1(1)
7124365QS---------P------P--P*1(1)
1764325QS---------P------P--P*1(1)
1643527QS--------P--P------P-*1(1)
7351426QS--------P--P------P-*1(1)
7326145QS--------P--P------P-*1(1)
1346725QS--------P--P------P-*1(1)
7341562QS--------P--P------P-*1(1)
2314567QS---------P--P--P---------PP--P*1(1)
3745621QS--------P--P-----P------P--PP-*1(1)
3274561QS---------P------P--P*1(1)
3654721QS---------P------P--P*1(1)
2541367QS--------P--P------P-*1(1)
1632547QS--------P--P------P-*1(1)
1645723QS--------P--P------P-*1(1)
1675432QS--------P--P------P-*1(1)
3547261QS--------P--P------P-*1(1)
2314567QS---------P--P--P---------PP--P*1(1)
7342165QS--------P--P---P------P--P--P-*1(1)
7124365QS---------P------P--P*1(1)
1764325QS---------P------P--P*1(1)
2531647QS--------P--P------P-*1(1)
1643527QS--------P--P------P-*1(1)
2574136QS--------P--P------P-*1(1)
1346725QS--------P--P------P-*1(1)
2547163QS--------P--P------P-*1(1)
2314567QS---------PP---------P--P--P--P*1(1)
2413576QS---------P------P--P*1(1)
3217645QS---------P------P--P*1(1)
7213654QS---------P------P--P*1(1)
2176534QS---------P------P--P*1(1)
2165473QS---------P------P--P*1(1)
2546137QS--------P--P------P-*1(1)
5231674QS--------P--P------P-*1(1)
7631254QS--------P--P------P-*1(1)
2456173QS--------P--P------P-*1(1)
All of these sets of blocks here give peals, but I have just shown some peals as an illustration.
2314567QS---------P--------P---------P------P---------P---P---------P-----P---------P---P--------P---------PP*1(1)
4163527QS--------P-----P---------P---P---------P-----P---------P---P-*1(1)
2173546QS-------PP--P---P-----P---P-PP-*1(1)
4215376QS----P---P-----P---P-*1(1)
2314567QS---------P-------P---------P-------P---------P---P---------P-----P---------P---P-------P---------P-P*1(1)
1364527QS--------P-----P---------P---P---------P-----P---------P---P-*1(1)
2173546QS------P-P--P---P-----P---PP-P-*1(1)
1235476QS----P---P-----P---P-*1(1)
2314567QS---------P-----P---------P---P---------P-----P---------P---P*1(1)
1673542QS--------P--------P------P---P---------P-----P---------P---P-*1(1)
4526173QS--------P--PP---P-----P---P-P-*1(1)
4562137QS--------P--P------P-*1(1)
4531726QS--------P--P------P-*1(1)
6512374QS-----P---P-----P---P*1(1)
2314567QS---------P-----P---------P---P---------P-----P---------P---P*1(1)
1763524QS--------P--------P------P---P---------P-----P---------P---P-*1(1)
2547163QS--------P--PP---P-----P---P-P-*1(1)
2531647QS--------P--P------P-*1(1)
2574136QS--------P--P------P-*1(1)
6512374QS-----P---P-----P---P*1(1)
2314567QS---------P-----P------P------P---------P--P---------P------P*1(1)
7356124QS---------P--P---------P------P---------P--P---------P------P*1(1)
1324657QS---------PPP--------PP----P--P*1(1)
1754623QS---------P------P--P*1(1)
6142753QS--------P--P------P-*1(1)
3146527QS--------PP--------PP*1(1)
2314567QS---------P-----P------P------P---------P--P---------P------P*1(1)
7356124QS---------P--P---------P------P---------P--P---------P------P*1(1)
6173245QS--------P--PPP--------PP----P-*1(1)
6123754QS--------P--P------P-*1(1)
6154372QS--------P--P------P-*1(1)
3146527QS--------PP--------PP*1(1)
2314567QS---------P--------P--P-------P---------P-P---------P-------P*1(1)
6172543QS--------P--PP-P-------P-P---P-*1(1)
6521734QS---------P------P--P*1(1)
6527143QS---------P------P--P*1(1)
4653271QS---------P------P--P*1(1)
3245617QS--------P--P------P-*1(1)
6712534QS--------P--P------P-*1(1)
4235671QS--------P--P------P-*1(1)
2314567QS---------P---P------P--------P---------PP---------P--------P*1(1)
3154627QS---------PPP--------PP----P--P*1(1)
6514327QS---------P------P--P*1(1)
3724651QS---------P------P--P*1(1)
6274351QS---------P------P--P*1(1)
6342157QS--------P--P------P-*1(1)
6345721QS--------P--P------P-*1(1)
3647521QS--------P--P------P-*1(1)
These two peals have 531 bobs, 45 fewer than any magic block peal, but still considerably more than the 10-part peals. The last peal has 102 Q-sets, but 10 must remain bobbed for the peal to be linked, so unfortunately we can’t remove another 30 bobs from this peal. Perhaps the extra Q-sets make it easier to choose a selection to plain so that there are no more than 6 bobs in a row.
So far I have 100 sets of blocks made of 72 complete B-blocks and many of them, though not all, give peals. Each sets of blocks has a total of between 67 and 73 round blocks, including B-blocks, to cover the extent. Here are just a few.
2314567QS---------P--------PP---------P------P-PP---------P-P---------P-------P*1(1)
1374562QS---------P--P--PP--P------P--------PP--P*1(1)
2547316QS--------P--PP--------P------P--PP--P--P-*1(1)
1547362QS--------P--P---PP--------PP-P-*1(1)
3756142QS---------P------P--P*1(1)
3265714QS--------P--P------P-*1(1)
3165742QS--------P--P------P-*1(1)
2314567QS---------P--------PP---------P------P-PP---------P-P---------P-------P*1(1)
3756142QS---------PP--P--P--P------P------P--P--P*1(1)
3265714QS--------P--P--P------P------P--P--P--PP-*1(1)
1547362QS--------P--P---PP--------PP-P-*1(1)
1374562QS---------P------P--P*1(1)
2547316QS--------P--P------P-*1(1)
3165742QS--------P--P------P-*1(1)
2314567QS---------P------PP--------PPP---------PP------P-P---------PP*1(1)
7526134QS---------PP----P-------P--P---------P--------P------P------P*1(1)
2541367QS--------P-------P---------P-P--P----P---------P-P-*1(1)
2465137QS--------P--P--P---------P--PP-*1(1)
3546217QS--------PP-P-------P*1(1)
2314567QS---------P--------P---------P-P---------P--------P---------PP---------P--------P--------P---------PP*1(1)
2541367QS---------P--------P---------PP---------P--------P---------PP*1(1)
3216547QS--------PP--------PP*1(1)
5246317QS--------PP--------PP*1(1)
4652317QS-------PP--------PP-*1(1)
2314567QS---------P-------P---------P--P---------P--P--P--P-------P-P------P---------PP-P*1(1)
4213675QS---------P--P--P---------PP--P*1(1)
2357164QS---------P------P--P*1(1)
5164273QS---------P------P--P*1(1)
1732645QS--------P--P------P-*1(1)
2175364QS--------P--P------P-*1(1)
2571463QS--------P--P------P-*1(1)
2164537QS------P-P-------P-P-*1(1)
2314567QS---------P---P---------P--P--PP---------P--------P*1(1)
3217564QS---------PP---------P--------P---------PP--P-----P*1(1)
6372145QS--------P--P--P---------P--PP-*1(1)
2547163QS---------P------P--P*1(1)
5267143QS---------P------P--P*1(1)
2174563QS--------P--P------P-*1(1)
1653247QS-------PP--------PP-*1(1)
2743165QS-------PP--------PP-*1(1)
2314567QS---------P--------P---------PP--------P---------P-------P---------P-PP*1(1)
5276134QS--------PPP--------PPP------P-*1(1)
2173546QS-------PP-------P--P------PPP-*1(1)
2536417QS--------P--P------P-*1(1)
2571634QS--------P--P------P-*1(1)
5216743QS--------P--P------P-*1(1)
2517643QS--------P--P------P-*1(1)
2546371QS--------P--P------P-*1(1)
2314567QS---------P-----P------P--PP--P*1(1)
4567312QS---------P--P--P---------PP--P*1(1)
1324657QS---------P------P--P*1(1)
5631247QS---------P------P--P*1(1)
1754623QS---------P------P--P*1(1)
3274561QS---------P------P--P*1(1)
2541367QS--------P--P------P-*1(1)
5213647QS--------P--P------P-*1(1)
6142753QS--------P--P------P-*1(1)
4376512QS--------P--P------P-*1(1)
3547261QS--------P--P------P-*1(1)
I have found 189 sets of blocks which together with their remaining B-blocks have an odd number of round blocks and can have the sixes rearranged to give 71 complete B-blocks.
2314567QS---------P-----P--------PP---P---------P----PPP---------PP----P----P----P--P---------PP---------P--------P--------P----P*1(1)
1642573QS---------P--------P---------PP----P---------P----P---------P----P---------P---P---------PP*1(1)
1436527QS-------PP--------PP-*1(1)
2653174QS----P----P----P----P*1(1)
2314567QS---------P--------P-------PPP---------PP-------P-P------PP--------PPP---------P--------P--------P-P---------PP--------P---------PP*1(1)
2516347QS---------P--------P---------PP---------P--------P---------PP*1(1)
5364217QS--------PP--------PP*1(1)
5217463QS--------PP-P-------P*1(1)
2314567QS---------P--------P-------PPP---------PP-------P-P------PP--------PPP---------P--------P--------P-P---------PP--------P---------PP*1(1)
5134267QS---------P-------P---------P-P---------P-------P---------P-P*1(1)
5217463QS--------PP-P-------P*1(1)
5364217QS------P-P-------P-P-*1(1)
2314567QS---------P-----P--------PP---P---------P----PPP---------PP----P----P----P--PP---------P--------P---------PP--------P--------P----P*1(1)
1726534QS---------P----P---------P----P---------P----P---------P----P*1(1)
1572643QS--------PP--------PP*1(1)
2653174QS----P----P----P----P*1(1)
2314567QS---------P-----P--------PP---P---------P----PPP---------PP----P----P----P--PP---------P--------P---------PP--------P--------P----P*1(1)
5167234QS--------P-------P---------P-P---------P-------P---------P-P-*1(1)
1572643QS--------PP--------PP*1(1)
2653174QS-------P-P-------P-P*1(1)
2314567QS---------P--------P--------P--------P---------P-P-------P--P------PPP-------P--P-------PPP---------P-------PPP---------P------PP-P*1(1)
5163247QS---------P------P--P*1(1)
2743516QS---------P------P--P*1(1)
5473216QS---------P------P--P*1(1)
2536417QS--------P--P------P-*1(1)
2537146QS--------P--P------P-*1(1)
2314567QS---------P--------P--P-------P-P------P---------PP--------P---------PP*1(1)
2431675QS---------PP---P--P------P-----P--P--P--P*1(1)
2163457QS--------P--P--P--P-----P------P--P---PP-*1(1)
2613475QS--------P--P-PP--------PP---P-*1(1)
2436157QS---------P------P--P*1(1)
2516347QS---------P------P--P*1(1)
2561374QS---------P------P--P*1(1)
No peal
2314567QS---------P-----P--------PP---P---------P----PPP---------PP----P----P----P--PP---------P--------P---------PP--------P--------P----P*1(1)
5134267QS------P-P--P----P--P-P------PP*1(1)
5143276QS------P-P--P----P--P-P------PP*1(1)
1572643QS--------PP--------PP*1(1)
2653174QS----P-PP-P*1(1)
2754163QS----P-PP-P*1(1)
2314567QS---------P---P------P--------P---------PP---------P--------P*1(1)
3146527QS--------PPP--------PPP--P--P-----P------P--P---PP-*1(1)
6514732QS--------P--P--P---------P--PP-*1(1)
2374651QS------P-----P--P------P---P--P*1(1)
3214657QS---------P------P--P*1(1)
3564127QS---------P------P--P*1(1)
2461735QS---------P------P--P*1(1)
6741532QS---------P------P--P*1(1)
No peal
2314567QS---------P--P-------P----PP---------P------P------P--------P*1(1)
6514327QS---------P-------P---------P-P---------P----P--P-P*1(1)
3517624QS---------P-------P---------P-P---------P----P--P-P*1(1)
4135276QS---------P--P--P---------PP--P*1(1)
1274365QS--------PP--------PP*1(1)
3145672QS------P----P----P-P-*1(1)
No peal
2314567QS---------PP---------P--------PP---------P--P-----P---P--P--P-----P------P--P---PP--------P*1(1)
3217564QS---------PP---P--P------P-----P--P--P--P*1(1)
3157426QS--------PPP--------PPP------P-*1(1)
3215746QS---------P------P--P*1(1)
3475126QS---------P------P--P*1(1)
3457162QS---------P------P--P*1(1)
3175462QS--------P--P------P-*1(1)
No peal
2314567QS---------P--------P-------P--P------P-P-------P--P--------P---------PP*1(1)
2461573QS---------P------PPP--------PPP*1(1)
2136547QS---------P------P--P*1(1)
5316247QS---------P------P--P*1(1)
5641273QS---------P------P--P*1(1)
5437261QS---------P------P--P*1(1)
2514763QS--------P--P------P-*1(1)
5217463QS--------P--P------P-*1(1)
2567341QS--------P--P------P-*1(1)
2314567QS---------P------PP---------PPP------P--P--------P--------PP---------P--------P---------PPP*1(1)
5134267QS---------P------P--P*1(1)
2341576QS---------P------P--P*1(1)
5431276QS---------P------P--P*1(1)
5376214QS---------P------P--P*1(1)
5367241QS---------P------P--P*1(1)
2761534QS--------P-------P-PP*1(1)
2714536QS--------PP--------PP*1(1)
2314567QS---------P---P------P-P---------P--PP---------P------P------P--------P*1(1)
4135276QS---------P--P--P---------PP--P*1(1)
3675142QS--------P--P------PP------P--P*1(1)
6345172QS---------P------P--P*1(1)
3621475QS--------P--P------P-*1(1)
3657124QS--------P--P------P-*1(1)
3157642QS--------P--P------P-*1(1)
1274365QS--------PP--------PP*1(1)
No peal
2314567QS---------P-----PP---------P--------P---------PP--------P---------P---P*1(1)
1576234QS---------PPP--------PP----P--P*1(1)
1576342QS--------PP---P------P--P----PP*1(1)
1567243QS---------P------P--P*1(1)
2541367QS--------P--P------P-*1(1)
2531476QS--------P--P------P-*1(1)
1267534QS--------P--P------P-*1(1)
1276543QS--------P--P------P-*1(1)
I have found over 2328 sets of an odd number of blocks where the sixes can be rearranged to give 70 complete B-blocks. Some of these can generate peals, and some examples are below.
2314567QS---------P-----P---------PP-----P--P------P---P--------P---------P---P*1(1)
2654137QS---------P-------P-P---------P-------P-P---------P-------P-P*1(1)
2541367QS--------P-P-------P---------P-P-------P---------P-P-------P-*1(1)
2145763QS--------P--PPP--------PP----P-*1(1)
2714536QS---------P------P--P*1(1)
2614573QS---------P------P--P*1(1)
2145637QS--------P--P------P-*1(1)
2314567QS---------P--------PP---------P------PP--------PPP---------PP-------PP---------P-------PP--------P-P---------P--------PP---------PP*1(1)
5734216QS---------P-------P---------P-P-------P---------P-P---------P-------P-P*1(1)
5246317QS--------PP--------PP*1(1)
5364217QS------P-P-------P-P-*1(1)
5314276QS------P-P-------P-P-*1(1)
2314567QS---------P--------P-------P--P------P-PP---------P-P---------P-------P*1(1)
5736124QS---------P---PP--------PP-P--P*1(1)
3756142QS---------P------P--P*1(1)
5736412QS---------P------P--P*1(1)
5736241QS---------P------P--P*1(1)
3756421QS---------P------P--P*1(1)
5163724QS--------P--P------P-*1(1)
3265714QS--------P--P------P-*1(1)
3165742QS--------P--P------P-*1(1)
5463712QS--------P--P------P-*1(1)
3465721QS--------P--P------P-*1(1)
2314567QS---------P--------P---------P-------P---------P-P-------P--P------P-PP*1(1)
5274631QS--------PPP--------PPP------P-*1(1)
2471536QS---------P------P--P*1(1)
5741236QS---------P------P--P*1(1)
2617534QS---------P------P--P*1(1)
5167234QS---------P------P--P*1(1)
2514637QS--------P--P------P-*1(1)
5216437QS--------P--P------P-*1(1)
2514376QS--------P--P------P-*1(1)
2576314QS--------P--P------P-*1(1)
2576431QS--------P--P------P-*1(1)
2314567QS---------P--------P---------P-------P---------P-P-P---------P--P----PP*1(1)
6413275QS--------P--P--PP--------PP--P-*1(1)
5431276QS---------P------P--P*1(1)
3451726QS---------P------P--P*1(1)
6231475QS---------P------P--P*1(1)
3261745QS---------P------P--P*1(1)
5761243QS---------P------P--P*1(1)
6751423QS---------P------P--P*1(1)
3715426QS--------P--P------P-*1(1)
5216743QS--------P--P------P-*1(1)
6415723QS--------P--P------P-*1(1)
2314567QS---------P--------P-P--------P---------P-P--------PP-------P---------PP-------PP---------PPP--------PP------P---------PP*1(1)
2541367QS--------P-------P-PP*1(1)
2514376QS--------P-------P-PP*1(1)
2517364QS--------P-------P-PP*1(1)
2546371QS--------P-------P-PP*1(1)
2456317QS-------P-P-------P-P*1(1)
3162547QS-------PP--------PP-*1(1)
This set of blocks includes the 12:1+21 block block from 78 complete B-blocks, so the other six blocks link 12 B-blocks into 6 blocks.
I have found over 600 sets of round blocks which together with some B-blocks give an odd number of round blocks where the sixes can be rearranged to give 69 complete B-blocks. Some of the sets of blocks are given below together with some peals.
2314567QS---------P-----P---------P-----P---------P----P---------P---P---------P----P---------P-----P---------P----P---------P---P---------P----P---------P-----P---------P----P---------P---P--------P---------PP---------P--------P*1(1)
1742365QS-------PP--P-----P----P---P----P-----P----P---P----P-----P----P---PPP-*1(1)
2314567QS---------P-------P---------P-------P---------P----P---------P---P---------P----P---------P-----P---------P----P---------P---P---------P----P---------P-----P---------P----P---------P---P---------P----P-------P---------P-P*1(1)
2173546QS------P-P--P----P---P----P-----P----P---P----P-----P----P---P----PP-P-*1(1)
2314567QS---------P--------P---P-----P---------P---P-----P---------P---P------P---------P--------PP---------P-----P---P---------P-----P---P---------P-----P--PP*1(1)
4516372QS--------P---P-----P---------P---P-----P---------P---P--PP--------PP-P-*1(1)
4561327QS---------P-----P---P---------P-----P---P---------P-----P---P*1(1)
2314567QS---------P--------P------PP--------PP-PP---------P--P--------P---------PP---------P--------P---------PP-----P---------PP*1(1)
7356124QS---------P--P---------P-------P---------P-P---------P-------P--------P---------PP---------P--------P*1(1)
5746321QS--------PP------PP--------PPPP*1(1)
2456317QS-------P-P-------P-P*1(1)
2314567QS---------P--------P---------PP--------P-P--------P---------P-P--------PP-------P---------PP-------PP---------PPP--------PP------PP*1(1)
2541367QS--------P-------P---------P-P-------P---------P-P---------P-------P-P-*1(1)
3546217QS--------PP--------PP*1(1)
2651347QS-------P-P-------P-P*1(1)
2456317QS-------P-P-------P-P*1(1)
For fewer bobs this peal just beats peals shown previously with 73 and 74 complete B-blocks and 531 bobs. This peal has 4 Q-sets which are bobbed. Plaining them all takes the bob count down to 516, but then there are multiple blocks.
2314567QS---------P-----PP---------P--------P---------PP--------P------P--PP--------PP--P*1(1)
5134672QS---------P---P--P---------P--PP--------P---------PP---------P--------P*1(1)
5164732QS---------PPP--------PP----P--P*1(1)
5746132QS--------P--P--P---------P--PP-*1(1)
2654137QS---------P------P--P*1(1)
1542376QS--------PP--------PP*1(1)
2314567QS---------P--------P---------P-------P--P--------P---------PP*1(1)
2657431QS---------P---PP--------PP-P--P*1(1)
6217435QS---------P------P--P*1(1)
6347125QS---------P------P--P*1(1)
3217564QS---------P------P--P*1(1)
3657124QS---------P------P--P*1(1)
6471235QS--------P--P------P-*1(1)
6174325QS--------P--P------P-*1(1)
3571264QS--------P--P------P-*1(1)
3175624QS--------P--P------P-*1(1)
2574361QS--------P--P------P-*1(1)
2475631QS--------P--P------P-*1(1)
The peals are also here: - CompLib 69 Stedman Triples bobs-only peals: Complete B-blocks, irregular
This shows how to arrange the extent so that there are an odd number of round blocks and that the sixes can be rearranged into 68 complete B-blocks. I have found roughly 800 sets of round blocks, and here are a few peals from three of those sets.
2314567QS---------P--------P---------PP------P-P--P-----P---------P----P---------P---P---------P----P---------P-----P---------P----P---------P---P---------P----P-------P---------P-P---------P-------P---------P-------P---------P----P---------P---P--P-P------PP*1(1)
7532164QS------P-P--P----P---P----P-----P----P---P----P--PPP----PP-P-*1(1)
5724361QS----P-PP-P*1(1)
2314567QS---------P---P------P-P---------P--PP---------P------P------P--------P*1(1)
1274365QS--------PP----P-P--P------P-------P--PPP*1(1)
6345172QS---------P------P-P--P------PP*1(1)
4135276QS---------P--P--P---------PP--P*1(1)
3675142QS--------P--P------PP------P--P*1(1)
3621475QS--------P--P------P-*1(1)
6324175QS--------P--P------P-*1(1)
6351724QS--------P--P------P-*1(1)
3657124QS--------P--P------P-*1(1)
2314567QS---------P------PPP--------PPP*1(1)
2167543QS-------PP--------PPP------P--P*1(1)
5134267QS---------P------P--P*1(1)
2413576QS---------P------P--P*1(1)
5143276QS---------P------P--P*1(1)
5716234QS---------P------P--P*1(1)
5617243QS---------P------P--P*1(1)
7514236QS--------PP--------PP*1(1)
5234761QS--------PP-P-------P*1(1)
5263741QS--------PP-P-------P*1(1)
5132764QS-------PP--------PP-*1(1)
I have found over 250 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [61 to 71] of round blocks where the sixes can be rearranged to give 67 complete B-blocks. Some of the sets of blocks are given below together with some peals.
2314567QS---------P--------P--------P-P---------P------PPP---------P--------P---------P-P------P-P---------PP*1(1)
5134267QS---------P-------P---------P-P------PP---------P-P*1(1)
2617534QS--------PP------PP--------PPPP*1(1)
5741236QS---------P------P--P*1(1)
2417563QS---------P------P--P*1(1)
5147263QS---------P------P--P*1(1)
2643571QS---------P------P--P*1(1)
5463271QS---------P------P--P*1(1)
5364217QS------P-P-------P-P-*1(1)
2314567QS---------P--------P--P-------P---------P--------PP---------P------P-PP*1(1)
4516372QS--------P--P---PP--------PP-P-*1(1)
4561327QS---------P------P--P*1(1)
2561374QS---------P------P--P*1(1)
7361524QS---------P------P--P*1(1)
4361572QS---------P------P--P*1(1)
7561342QS---------P------P--P*1(1)
2516347QS--------P--P------P-*1(1)
4316527QS--------P--P------P-*1(1)
7516324QS--------P--P------P-*1(1)
7316542QS--------P--P------P-*1(1)
I have found over 84 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [47 to 71] of round blocks where the sixes can be rearranged to give 66 complete B-blocks. Some of the sets of blocks are given below together with some peals.
2314567QS---------P-----P---------P----P---------P---P---------P--PP--------PPP*3(1)
6342571QS---------P--------P---------PP---------P--P----P-----P-----P*3(1)
2314567QS---------P-----P---------P-----P---------P----P---------P---P---------P----P---------P-----P---------P----P---------P---P---------P----P---------P-----P---------P----P---------P---P--------P---------PP---------P--------P*1(1)
1742365QS-------PP--P-----P-PP--------PP-P---P----P-----P----P---P----P-----P----P---PPP-*1(1)
7146325QS---------PP---------P--------P---------PP---------P--------P*1(1)
2314567QS---------P--------P---------PP------PP--------PPP---------PP------P-PP*1(1)
7521436QS---------PP----P-------P--P---------P--------P------P------P*1(1)
2541367QS--------P-------P---------P-P-------P---------P-P--P----P-P-*1(1)
2615437QS--------P--P--P---------P--PP-*1(1)
3546217QS--------PP--------PP*1(1)
3561247QS--------PP-P-------P*1(1)
2456317QS-------P-P-------P-P*1(1)
The three-part peals make a change from the one-part peals. There are several types of three-part peals:
Blocks which divide the extent into 3 identical parts. These are then linked with Q-sets of bobs or omits. For an easier peal it is best to use only 1 Q-set (or perhaps a second at a similar point in other parts). The sixes affected by the Q-set should be as close a possible to minimise the disruption. If the 3 identical parts are divided into ABCD
at the Q-set points then peals of the form
ABC'CDAB'BCA'D
where ‘ is a bob or omit can sometimes be found. We should minimise the length of B and C.
So the peal links the parts like this:
1234567: ABC
/
1357246: ..CD
1357246: AB
/
1526374: .BCD
1526374: A
\
\
1234567: ...D
A variation is
AB'B'BC'C'CDA'DA'D
which might be easier to call, at the expense of a longer first part and shorter second and third parts.
It might be possible to add extra Q-sets of omits to reduce the bob count, but the peal is then less regular.
Sometime the extent can be split into round blocks using a group of order 3, but not into 3 identical parts, but in 2,3,4,5.. sets of 3 identical parts. If there are an odd number of sets then it might be possible to find some Q-sets of bobs or omits to link everything together.
By bobbing all available Q-sets there might be whole B-blocks revealed as some of the sets. If complementary pairs of B-blocks are then available a free choice of 1 of the 6 possible pairs can be made, and that might give more Q-sets of omits to link everything together. The result is going to be a much less regular peal though.
With all these three-part peals then by choosing an appropriate rotation/reversal a good part-end (either 1357246
or 3456127
etc.) can often be found.
I have found 25 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [53 to 63] of round blocks where the sixes can be rearranged to give 65 complete B-blocks. I have found two of the sets of blocks give some peals.
2314567QS---------P-----P---------P-----P---------P----P---------P---P---------P----P-----PP---------P--------P---------PP--------P----P---------P---P---------P----P---------P-----P---------P----P---------P---P--------P---------PP---------P--------P*1(1)
1742365QS-------PP--P-----P----P---P----P-----P----P---P----P-----P----P---PPP-*1(1)
2451376QS-------P---P-----PP-*1(1)
3652147QS-------PP--------PP-*1(1)
2314567QS---------P--------P---------P-------P-P--P------P-------P-P-P--P------P-------PP*1(1)
1324657QS---------P---P-P-P------P--P-----P-PP--P*1(1)
2514376QS---------PP---------P--P--P--P*1(1)
2671435QS---------P------P--P*1(1)
3265714QS---------P------P--P*1(1)
5216743QS---------P------P--P*1(1)
6314572QS---------P------P--P*1(1)
7514362QS---------P------P--P*1(1)
2541367QS--------P--P------P-*1(1)
1642357QS--------P--P------P-*1(1)
2417635QS--------P--P------P-*1(1)
6541372QS--------P--P------P-*1(1)
7341562QS--------P--P------P-*1(1)
7235461QS--------P--P------P-*1(1)
I have found 48 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [51 to 69] of round blocks where the sixes can be rearranged to give 64 complete B-blocks. Here are some of the blocks and some peals.
2314567QS---------P--------P---------PP------P-P--P-----P----P-P---------P-------P---------P-P-------P---P---------P----P---------P-----P---------P----P---------P---P---------P----P-------P---------P-P---------P-------P---------P-------P---------P----P---------P---P--P-P------PP*1(1)
7532164QS------P-P--P----P---P----P-----P----P---P----P--PPP----PP-P-*1(1)
1352764QS-------P-P-------P-P*1(1)
1543726QS------P----P----P-P-*1(1)
5724361QS----P-PP-P*1(1)
2314567QS---------P-------P---------P-------P---------P----P---------P---P---------P----P---------P-----P----P-P---------P-------P---------P-P-------P---P---------P----P---------PP--P---------P-P---------P-------P---------PP---------P----P-------P---------P-P*1(1)
7346152QS-------P----P---P----P-----P----P---P----PP-P-------P-P--P----P---P-P-*1(1)
3516742QS---------P------P--P*1(1)
5713246QS-------P-P-------P-P*1(1)
5167234QS------P----P----P-P-*1(1)
2314567QS---------P------PP--------PPP---------PP-------PP---------P-------PP--------P-P---------P-------P--P------PPP---------PP------P-PP*1(1)
5134267QS---------P-------P---------P-P-------P---------P-P------PP-P*1(1)
2471536QS---------P------P--P*1(1)
5741236QS---------P------P--P*1(1)
5376214QS--------P-------P-PP*1(1)
2514637QS--------P--P------P-*1(1)
5261347QS--------PP-P-------P*1(1)
5364217QS------P-P-------P-P-*1(1)
2314567QS---------P-------P------P----P----PP---------PPP----P-P-------P---P--------P---------PP---------PP------P----P----P--P-P*1(1)
1264573QS--------PP------P-P--P----P----P------P-------P--P*1(1)
5174236QS--------P-------P----P-------P*1(1)
1326547QS------P-------P--P------P-P--P*1(1)
5624173QS---------P------P--P*1(1)
5743126QS--------P-------P-PP*1(1)
1723546QS----P-PP-P*1(1)
I have found 16 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [47 to 63] of round blocks where the sixes can be rearranged to give 63 complete B-blocks. Here are two of the sets of blocks which give some peals. These two sets of blocks happen to come from a three-part group.
2314567QS---------P-------P---------P-------P---------P----P---------P---P---------P----P-------P---------P-P*3(1)
2173546QS------P-P--P----P---P----PP-P-*3(1)
2314567QS---------P-----P---------P-----P---------P----P---------P---P--------P---------PP---------P--------P*3(1)
5126347QS-------PP--P-----P----P---PPP-*3(1)
I have found 25 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [45 to 69] of round blocks where the sixes can be rearranged to give 62 complete B-blocks. Here are 7 of the sets of blocks which give some peals.
2314567QS---------P--------P---------PP---------P--------P-P----P---------P---P---------P----P---------P-----P---------P----P---------P---P-P-P---------P-------P---------P-P---------P-------P-------P----P---------P-----P---------P-----P---------P---PP--------PP---P---------PP---------P--------P---P---------P----P---------P-----P-------PP*1(1)
6724531QS-------PPP---P----P-----P----P---P----P-----P----P---P----P-----P--PP-*1(1)
5364217QS------P-P-------P-P-*1(1)
2314567QS---------P-----P---------P-----P---------P----P-------P--P------P-P---P---------P----P---------P-----P---------P----P---------P---P---------P----P-P------P--P-------P-----P---------P----P---------P---P--------P---------PP---------P---P--P---------P-P*1(1)
1742365QS-------PP--P-----P----P---P----P-----P----P---P----P-----P----P---PPP-*1(1)
5672143QS---------P------P--P*1(1)
7134562QS---------P------P--P*1(1)
5167234QS--------P--P------P-*1(1)
5127643QS--------P--P------P-*1(1)
7543162QS--------P--P------P-*1(1)
2314567QS---------P-------P---------P-PPP--------PP----PP---------P-P*1(1)
1426357QS---------P-----P------P------P---------P--P---------P------P*1(1)
1726534QS---------P----P---------P----P---------P----P--P-P*1(1)
7435216QS---------P--P---------P---P--P--P---------P------P*1(1)
7541326QS---------P------P--P*1(1)
7514362QS---------P------P--P*1(1)
3672541QS---------P------P--P*1(1)
1574263QS--------P-------P-PP*1(1)
7314526QS--------P--P------P-*1(1)
7341562QS--------P--P------P-*1(1)
3527641QS--------P--P------P-*1(1)
4265317QS--------PP--------PP*1(1)
1247563QS------P----P----P-P-*1(1)
2314567QS---------P--------P---------P-------P-------P---------P-P--P----P---------P---P-----P---------P-PPP--------PPP----P---------P----P------P-PP*1(1)
4721536QS---------P-------P------P----P---------P----P--P-P*1(1)
6127534QS---------P-------P------P----P---------P----P--P-P*1(1)
4651237QS-------P-P----P----P*1(1)
6457231QS-------P-P----P----P*1(1)
2541673QS------P----P----P-P-*1(1)
2567413QS------P----P----P-P-*1(1)
2314567QS---------P---P------P--------P---------P---P--P---------P--P---P-----P*1(1)
2451376QS--------P-----P---P---------P--P--P---P---------P-----P--PP-*1(1)
3652471QS--------P--P-P---P-----P---PP-*1(1)
2435617QS---------P------P--P*1(1)
6345217QS---------P------P--P*1(1)
1675324QS---------P------P--P*1(1)
2175643QS---------P------P--P*1(1)
6715243QS---------P------P--P*1(1)
3425671QS---------P------P--P*1(1)
4375621QS---------P------P--P*1(1)
1357624QS--------P--P------P-*1(1)
2654713QS--------P--P------P-*1(1)
6257413QS--------P--P------P-*1(1)
4657321QS--------P--P------P-*1(1)
2743165QS----P---P-----P---P-*1(1)
2314567QS---------P---P-------P-P------PP------P-P-------P--P-------P---------PPP----P--PPP--------PP----P----P------P-P--------P*1(1)
3254671QS--------P--P-------P------P----P----P--P-P------PP*1(1)
2651347QS--------P-------P----P-------P*1(1)
2314675QS--------P-------P----P-------P*1(1)
6537241QS-------P------P--P-P------P--P*1(1)
6731245QS----P-PP-P*1(1)
3567214QS----P-PP-P*1(1)
2314567QS---------P----PP--------PPP--P*1(1)
6345172QS-------PP------P------P--P-PP-*1(1)
2413576QS---------P------P--P*1(1)
1523647QS--------PP--------PP*1(1)
1632547QS--------PP--------PP*1(1)
1624537QS--------PP--------PP*1(1)
1573624QS--------PP--------PP*1(1)
1642573QS--------PP--------PP*1(1)
1345627QS-------PP--------PP-*1(1)
6435127QS-------PP--------PP-*1(1)
1725643QS-------PP--------PP-*1(1)
2536174QS-----P--P------P--P-*1(1)
3675142QS-----P--P---P-----P-*1(1)
I have found 173 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [43 to 57] of round blocks where the sixes can be rearranged to give 61 complete B-blocks. Here are 4 of the sets of blocks together with some peals.
2314567QS---------P---------PP---------P-----P---------P----P---------P---P---------P----P-----PP---------P--------P---------PP---------P--------P---P-----P---------P-----P---------P--------P---------PP---------P--------P---P---------P----P---------P-----P---------P----P---P--------P---------PP---------P--------P---------PP-----P---P---------P---P*1(1)
3462157QS-------PPP---P----P-----P----P---P----P-----P----P---P----P-----P--PP-*1(1)
4715236QS-----P--P------P--P-*1(1)
1537264QS-----P--P------P--P-*1(1)
2314567QS---------P--------P---------PP---------P--------P---P-----P---------P-----P---------P--------P---------PP---------P--------P---P---------P----P---------P-----P---------P----P---P--------P---------PP---------P--------P---------PP-----P---P---------P----P---------P-----P---------P----P---------P---P---------P----P-----PP*1(1)
7642153QS-------PPP---P----P-----P----P---P----P-----P----P---P----P-----P--PP-*1(1)
4563217QS-----P--P------P--P-*1(1)
6315274QS-----P--P------P--P-*1(1)
2314567QS---------P--------P---------PP---------P--------P----P----P---------P---P---------P----P---------P-----P---------P----P---------P---P-P-P---------P-------P---------P-P---------P-------P------P---------PP---------P--------P---------P-----P---------P-----P---------P----P---------P---P---------P----P---------P-----P----PP*1(1)
2456731QS-------PP--P-----P----P---P----P-----P----P---P----P-----P----P---PPP-*1(1)
3546217QS--------PP--------PP*1(1)
2456317QS-------P-P-------P-P*1(1)
2314567QS---------P-----P---------P-----P---------P----P---------P---P---------P----P---------P-----P----PP------P-P--P----P--P-P-P----P---------P---P---------P----P---------P-----P---------P----P---------P---P-P-P--P----P--P-P------PP---P---------PP---------P--------P*1(1)
1742365QS-------PP--P-----P----P---P----P-----P----P---P----P-----P----P---PPP-*1(1)
1423675QS------P-P--P----P--P-P------PP*1(1)
1675432QS------P-P--P----P--P-P------PP*1(1)
4215637QS----P-PP-P*1(1)
4317625QS----P-PP-P*1(1)
1742653QS----P-PP-P*1(1)
1543672QS----P-PP-P*1(1)
2314567QS---------P-----P---------P-----P---------P----P---------P---P---------P----P---------P-----P----P--P------P----P----P---------P---P---------P----P---------P-----P---------P----P---------P---P-P--P------P------P---------PP---------P--------P*1(1)
1742365QS-------PP--P-----P----P---P----P-----P----P---P----P-----P----P---PPP-*1(1)
1632475QS--------P--P------P-*1(1)
6134275QS--------P--P------P-*1(1)
1674523QS--------P--P------P-*1(1)
6175423QS--------P--P------P-*1(1)
1654732QS--------P--P------P-*1(1)
6157432QS--------P--P------P-*1(1)
I have found 6 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [47 to 59] of round blocks where the sixes can be rearranged to give 60 complete B-blocks. Here are the sets of blocks together with a peal.
2314567QS---------P--------P---------PP------P-P--P-----P---------P----P---------P---P----P------P--P----P----P---------P-----P---------P----P---------P---P---------P----P-------P---------P-P---------P-------P---------P-------P-------P------P--P-P----P---------P---P--P-P------PP*1(1)
7532164QS------P-P--P----P---P----P-----P----P---P----P--PPP----PP-P-*1(1)
4731625QS---------P------P--P*1(1)
6371425QS---------P------P--P*1(1)
6413527QS--------P--P------P-*1(1)
4615327QS--------P--P------P-*1(1)
6412735QS--------P--P------P-*1(1)
4617235QS--------P--P------P-*1(1)
5724361QS----P-PP-P*1(1)
Gives peals, but similar to blocks below
2314567QS---------P--------P---------PP------P-P--P-----P---------P----P---------P---P-P--P------P-------P----P---------P-----P---------P----P---------P---P---------P----P-------P---------P-P---------P-------P---------P-------P----P--P------P----P----P---------P---P--P-P------PP*1(1)
7532164QS------P-P--P----P---P----P-----P----P---P----P--PPP----PP-P-*1(1)
4351627QS---------P------P--P*1(1)
6531427QS---------P------P--P*1(1)
4271635QS---------P------P--P*1(1)
6721435QS---------P------P--P*1(1)
4613725QS--------P--P------P-*1(1)
6417325QS--------P--P------P-*1(1)
5724361QS----P-PP-P*1(1)
2314567QS------P-----P--P-----P------P--P---PP--P*1(1)
1435672QS--------P--P------PP------P--P*1(1)
1653472QS--------P--P------PP------P--P*1(1)
2374165QS--------P--P--P---------P--PP-*1(1)
4567312QS------P-----P--P------P---P--P*1(1)
2463517QS------P--P-----P------P--P---P*1(1)
5631247QS---------P------P--P*1(1)
2147365QS---------P------P--P*1(1)
3672154QS---------P------P--P*1(1)
5427163QS---------P------P--P*1(1)
3274561QS---------P------P--P*1(1)
2541367QS--------P--P------P-*1(1)
5213647QS--------P--P------P-*1(1)
5271436QS--------P--P------P-*1(1)
3127654QS--------P--P------P-*1(1)
3547261QS--------P--P------P-*1(1)
5276341QS--------P--P------P-*1(1)
6724531QS--------P--P------P-*1(1)
No peals
I have found 6 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [45 to 55] of round blocks where the sixes can be rearranged to give 59 complete B-blocks. Here is one set of blocks which gives a peal.
2314567QS---------P-----P---------P-----P---P------P--P-----P----P---------P---P---------P----P---------P-----P---------P----P---------P---P--------P------P--PP----P---------P-----P---------P----P---------P---P--------P---------PP--------P------P--PP--------P*1(1)
1742365QS-------PP-P--P------PP-----P----P---P----P-----P--P--P------P-P---P----P-----P----P---PPP-*1(1)
6137254QS---------P------P--P*1(1)
6271453QS--------P--P------P-*1(1)
2674153QS--------P--P------P-*1(1)
2645731QS--------P--P------P-*1(1)
6247531QS--------P--P------P-*1(1)
I have found 67 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [39 to 69] of round blocks where the sixes can be rearranged to give 58 complete B-blocks. Several sets of the blocks give peals, here are two together with some peals.
2314567QS---------P---P----P--P------P----P--P---------P------P------P------PP--P---------P--P--P-P*1(1)
4271635QS--------P-------P---------P-P---------P-------P---------P-P-*1(1)
4617235QS--------P-------P---------P-P---------P-------P---------P-P-*1(1)
4235716QS--------P--PP--P----P--P----PP--------PPP----P--P-*1(1)
4135276QS---------P--P--P--P--P------P------PP--P*1(1)
4153672QS---------P--P--P--P--P------P------PP--P*1(1)
4735612QS---------P--P--P--P--P------P------PP--P*1(1)
4635172QS--------P--PP--P----P--P------P----P--P-*1(1)
4653712QS--------P--PP--P----P--P------P----P--P-*1(1)
4163275QS-------P-P-------P-P*1(1)
4723615QS-------P-P-------P-P*1(1)
2314567QS---------P---P-------P------P----P------P-------P--P-------P---------PP-----P--P--------P--P-------PPP--------PP----P----P------P-P--------P*1(1)
2645317QS--------P--P-------P------P----P------P-------P--P*1(1)
3254671QS--------P--P-------P------P----P------P-------P--P*1(1)
6731245QS----P-PP-P*1(1)
2167354QS----P-PP-P*1(1)
3567214QS----P-PP-P*1(1)
6725341QS----P-PP-P*1(1)
I have found 5 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [41 to 55] of round blocks where the sixes can be rearranged to give 57 complete B-blocks. Two of the sets of the blocks give peals which are illustrated below.
2314567QS---------P-----P---------P-----P---------P----P---------P---P---------P----P-----PP---------P--------P---------PP--------P----P---------P---P---------P----P---------P-----P---------P----P---------P---P--------P---------PP---------P--------P*1(1)
4612537QS---------P--------P---------PP---------P--------PP-----P----P---P----P-----P--P-P---------P-------P---------P-P---------P-------P-P---PPP--------PP--P-----P----P---P---PP*1(1)
6523417QS--------PP--------PP*1(1)
2451376QS-------P---P-----PP-*1(1)
4253617QS-------P-P-------P-P*1(1)
3652147QS-------PP--------PP-*1(1)
2314567QS---------P---P------P--------P----P--P------P----PP-P--P------P-------P--------P*1(1)
1234756QS--------P--P------PP------P--P*1(1)
1743256QS--------P--P------PP------P--P*1(1)
6372451QS--------P--P------PP------P--P*1(1)
6427351QS--------P--P------PP------P--P*1(1)
6273541QS--------P--PPP--------PP----P-*1(1)
3214657QS---------P------P--P*1(1)
1523476QS---------P------P--P*1(1)
1574326QS---------P------P--P*1(1)
7362154QS---------P------P--P*1(1)
2467153QS---------P------P--P*1(1)
4713652QS---------P------P--P*1(1)
6537241QS---------P------P--P*1(1)
6542731QS---------P------P--P*1(1)
1347526QS--------P--P------P-*1(1)
2176453QS--------P--P------P-*1(1)
4631752QS--------P--P------P-*1(1)
6724531QS--------P--P------P-*1(1)
I have found 144 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [35 to 61] of round blocks where the sixes can be rearranged to give 56 complete B-blocks. Only two of the sets of the blocks give peals which are illustrated below.
2314567QS---------P-------P---------P--P--P---------P--P--P-------P---------P-P*1(1)
7216345QS------P--P----P----P------PP--P-P-------P-P-P-P--P----P----P*1(1)
1572364QS-------P------P--P-P-------P------P-P--P----P--P-P*1(1)
7356124QS--------P--P------PP------P-P--P------PP*1(1)
7165324QS------P--P------P-P--P----P--P------P-P-*1(1)
3615247QS---------P------P--P*1(1)
4156327QS---------P------P--P*1(1)
3251647QS--------P--P------P-*1(1)
4365127QS--------P--P------P-*1(1)
2571463QS--------P--P------P-*1(1)
6472153QS--------P--P------P-*1(1)
1432765QS-------P-P----P----P*1(1)
7345126QS------P----P----P-P-*1(1)
2314567QS---------P--P--P----P--P-P------PP-----PP---------P--P--P------P------P--------P*1(1)
3215746QS---------PP-----PP------P-P--P----P--P-PP--P--P--P*1(1)
1274365QS--------PP------P-------P----P-------PPP*1(1)
3627145QS--------P-------P----P-------P*1(1)
3124675QS------P-P--P----P--P-P------PP*1(1)
3675142QS------P-P--P----P--P-P------PP*1(1)
3217564QS---------P------P--P*1(1)
1437625QS-------P-P----P----P*1(1)
6345172QS------P----P----P-P-*1(1)
I have found 32 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [35 to 59] of round blocks where the sixes can be rearranged to give 55 complete B-blocks. The two sets of blocks which give peals are illustrated below.
2314567QS---------P--------P-P-------PP---------PPP-------P---------PPP-----P---P---------P----P---------P-----P---------P-----P---------P--------P---------PP---------P--------P---P---------P----P---------P-----P---------P----P---------P---P---------P----P--------PP---------P--------P---------PP-----P----P--P--------P---------P-P--------P--------P*1(1)
2671354QS---------P--------P---------PP---P---P----P-----P--PP--------PPP---P----P-----P----P---P----P-----PP--------P---------PP*1(1)
3274615QS--------PP--------PP*1(1)
5124763QS-------PP--------PP-*1(1)
7625431QS-------PP-----P---P-*1(1)
2314567QS---------P-------P--------P------P---P---------P-----P---------P---P---------P-----P--P-P--PP--P-----P---------P---P-----P---------P---P------P----PP-P-----P---P------PPP-----P---P------P--------PP--P-----P-PP-P---------P---P---------P-----P---------P---P---------P--P-P-PP-----P---P-----P--PP-----P---P-----PP*1(1)
3465217QS-------PP----P------P--P---PP-*1(1)
3752641QS---------P------P--P*1(1)
7423516QS-------PP-----P---P-*1(1)
7123564QS-------PP-----P---P-*1(1)
5143276QS-----P---P-----P---P*1(1)
2371564QS-----P---P-----P---P*1(1)
I have found 72 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [33 to 45] of round blocks where the sixes can be rearranged to give 55 complete B-blocks. Some of the sets of blocks which give peals are illustrated below.
2314567QS---------P--------P---------PP---------P--------P----P----P---------P---P---------P----P---------P-----P---------P----P---------P---P--------P---------PP---------P--------P---------P-----P---------P-----P---------P----P---------P---P---------P----P---------P-----P----PP*1(1)
6513472QS---------P--------P----PP--P-----P--P-P---------P-------P---------P-P---------P-------P-P---P----PPP--------PP---P----P---P---PP*1(1)
2516347QS---------P--------P---------PP---------P--------P---------PP*1(1)
6531427QS---------P--------PP-----P----P---PPP---PP*1(1)
5412637QS--------PP--------PP*1(1)
3546217QS--------PP--------PP*1(1)
6142537QS-------P-P-------P-P*1(1)
2314567QS---------P-----P---------P----P---------P----P---------P----P-P---------P---P---------P----P---------P----P---------P----P-------P*3(1)
3462157QS-------PP-P--P----P----P----PP*3(1)
3621547QS----P----P----P----P*1(1)
3275416QS----P----P----P----P*1(1)
3562174QS----P----P----P----P*1(1)
These are blocks from a group of order 3 so give irregular, but not exact, three-part peals
2314567QS---------P---P----P--P----PP--------PPP----P--P---------P------P------P------PP--P---------P--P--P-P*1(1)
2574361QS---------P---P----P--P----PP--------PPP----P--P---------P------P------P------PP--P---------P--P--P-P*1(1)
6514327QS---------P---P----P--P------P----P--P---------P------P------P------PP--P---------P--P--P-P*1(1)
4271635QS--------P-------P---------P-P---------P-------P---------P-P-*1(1)
4617235QS--------P-------P---------P-P---------P-------P---------P-P-*1(1)
4653712QS--------P--PP--P----P--P----PP--------PPP----P--P-*1(1)
4153672QS---------P--P--P--P--P------P------PP--P*1(1)
4163275QS-------P-P-------P-P*1(1)
4723615QS-------P-P-------P-P*1(1)
These are curious blocks - some are repeated, some are not.
2314567QS---------P-----P---------P---P------P--------P---------P---P*1(1)
7613245QS---------P-----P---------P---P------P--------P---------P---P*1(1)
5416732QS---------P-----P---------P---P------P--------P---------P---P*1(1)
1234756QS--------P-----P---------P---P---------P-----P--PP-*1(1)
1763524QS--------P-----P---------P---P---------P-----P--PP-*1(1)
1546273QS--------P-----P---------P---P---------P-----P--PP-*1(1)
4172536QS---------P-P---P-----P---PP--P*1(1)
3157264QS---------P-P---P-----P---PP--P*1(1)
6125743QS---------P-P---P-----P---PP--P*1(1)
4527136QS--------P--P------P-*1(1)
3275164QS--------P--P------P-*1(1)
6752143QS--------P--P------P-*1(1)
1465327QS----P---P-----P---P-*1(1)
1342675QS----P---P-----P---P-*1(1)
1527463QS----P---P-----P---P-*1(1)
I have found 19 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [31 to 59] of round blocks where the sixes can be rearranged to give 53 complete B-blocks. Here is a set of blocks which gives peals.
2314567QS---------P--------P---------PP---------P--------P----P----P---------P---P---------P----P---------P-----P---------P----P---------P---P-P-P---------P-------P---------P-P---------P-------P------P---------PP---------P--------P---------P-----P---------P-----P---------P----P---------P---P---------P----P---------P-----P----PP*1(1)
6513472QS---------P--------P----PP--P-----P--P-P---------P-------P---------P-P---------P-------P-P---P----P-----P----P---P---PP*1(1)
6531427QS---------P--------PP-----P----P---PPP---PP*1(1)
5412637QS--------PP--------PP*1(1)
3546217QS--------PP--------PP*1(1)
6142537QS-------P-P-------P-P*1(1)
2456317QS-------P-P-------P-P*1(1)
I have found 42 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [31 to 35] of round blocks where the sixes can be rearranged to give 52 complete B-blocks. Here is a set of blocks which gives peals.
2314567QS---------P--------P---------PP---------P--------P----P----P---------P---P---------P----P---------P-----P---------P----P---------P---P---PP--------P---------PP---------P--------PP---------PP-P---P----PPP--------PP---P----P---P---PP---------P--------P----PP--P-----P--P-P---------P-------P---------P-P---------P-----P----P---------PP---------P--------P---------P-----P---------P-----P---------P----P---------P---P---------P----P---------P-----P----PP*1(1)
6531427QS---------P--------PP-----P----P---PPP---PP*1(1)
5412637QS--------PP--------PP*1(1)
3546217QS--------PP--------PP*1(1)
6142537QS-------P-P-------P-P*1(1)
3162547QS-------PP--------PP-*1(1)
I have found 17 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [29 to 45] of round blocks where the sixes can be rearranged to give 51 complete B-blocks. Here is a set of blocks which gives peals.
2314567QS---------P--------P---P---------P--P--P-------P--P--------P---------PP*1(1)
7352614QS---------P--------P---P---------P--P--P-------P--P--------P---------PP*1(1)
4367152QS---------P--------P---P---------P--P--P-------P--P--------P---------PP*1(1)
1427536QS--------PPP--------PPP------P-*1(1)
6742135QS--------PPP--------PPP------P-*1(1)
5274631QS--------PPP--------PPP------P-*1(1)
1652437QS---------P------P--P*1(1)
4562137QS---------P------P--P*1(1)
1732456QS---------P------P--P*1(1)
6234715QS---------P------P--P*1(1)
2617534QS---------P------P--P*1(1)
5167234QS---------P------P--P*1(1)
6514732QS---------P------P--P*1(1)
7154632QS---------P------P--P*1(1)
5437261QS---------P------P--P*1(1)
4123657QS--------P--P------P-*1(1)
4125736QS--------P--P------P-*1(1)
7641235QS--------P--P------P-*1(1)
2573164QS--------P--P------P-*1(1)
7643512QS--------P--P------P-*1(1)
2576431QS--------P--P------P-*1(1)
This is a three-part based set of blocks. It does not give exact three-part peals.
I have found 23 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [27 to 35] of round blocks where the sixes can be rearranged to give 50 complete B-blocks. Here is a set of blocks which gives peals.
2314567QS---------P--------P---------PP---------P--------P----P----P---------P---P---------P----P---------P-----P---------P----P---------P---P--------P---------PP---------P--------P---------P-----P---------P-----P---------P----P---------P---P---------P----P-----PP---P---------PP---------P--------P---------PP---------P----P--------P---------PP---PP*1(1)
6513472QS---------P--------P----PP--P-----P--P-P---------P-------P------PP--------PP-P-P---------P-------P-P---P----PPP--------PP---P----P---P---PP*1(1)
6531427QS---------P--------PP-----P----P---PPP---PP*1(1)
5412637QS--------PP--------PP*1(1)
3546217QS--------PP--------PP*1(1)
6512743QS-------P---P-----PP-*1(1)
6142537QS-------P-P-------P-P*1(1)
I have found 12 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [31 to 35] of round blocks where the sixes can be rearranged to give 49 complete B-blocks. Here is a set of blocks which gives peals.
2314567QS---------P--------P---------PP---------P--------P----P----P---------P---P---------P----P---------P-----P---------P----P---------P---P-P-P---------P-------P-------P--------P---------PP---PP*1(1)
6725134QS---------P-----P---------P-----P---------P----P---------P---P---------P----P-----PP-P-P---------P-------P------P---------PP---------P--------P*1(1)
6513472QS---------P--------P----PP--P-----P--P-P---------P-------P------PP--------PP-P-P---------P-------P-P---P----P-----P----P---P---PP*1(1)
6531427QS---------P--------PP-----P----P---PPP---PP*1(1)
5412637QS--------PP--------PP*1(1)
3546217QS--------PP--------PP*1(1)
6512743QS-------P---P-----PP-*1(1)
6142537QS-------P-P-------P-P*1(1))
2456317QS-------P-P-------P-P*1(1))
I have found 14 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [29 to 35] of round blocks where the sixes can be rearranged to give 48 complete B-blocks. Here is the set of blocks which gives peals.
2314567QS---------P----P----P------P-P----P----P---P---------P----P----P--P-------P----P----P-----P*3(1)
2654137QS---------P----P---P---P---------P--P-P----P---------P----P-----PP----P*3(1)
2356147QS---------P------P--P*1(1)
7246513QS---------P------P--P*1(1)
3716452QS---------P------P--P*1(1)
These blocks are from a group of order 3.
8 examples of exact theee-parts with 636 bobs
Number of bobs | Number of peals |
---|---|
636 | 8 |
645 | 72 |
654 | 263 |
663 | 493 |
672 | 488 |
681 | 228 |
690 | 32 |
Total | 1584 |
The 2017 exact three-part peals have between 603 and 639 bobs and all have at least one 9 bob run per part; these have between 636 and 690 bobs.
Also
I have found 2 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [31, 35] of round blocks where the sixes can be rearranged to give 42 complete B-blocks. Here are the sets of blocks together with some peals. Both sets of blocks are based on a group of order 3.
2314567QS---------P----P---P---P---------P--P-P----P---PPP-P----P----P---P---------P----P----P--P-------P----P----P-----P----PP--------PP---P----P----P----PP----P----P-----PP----P*3(1)
2613547QS---------P------P--P*1(1)
7243156QS---------P------P--P*1(1)
6753412QS---------P------P--P*1(1)
Number of bobs | Number of peals |
---|---|
612 | 1 |
621 | 9 |
630 | 34 |
639 | 70 |
648 | 84 |
657 | 56 |
666 | 16 |
Total | 270 |
2314567QS---------P-----PPP--------PP-------P-----P---------P----P-------PP--------PPP---P--------P---------PP---------P---PP--------PP---P*3(1)
5126347QS-------PP--P-----P----P---PPP-*3(1)
1723546QS--------PP--------PP*1(1)
5163724QS--------PP--------PP*1(1)
7562143QS--------PP--------PP*1(1)
I have found at least 84 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [25] of round blocks where the sixes can be rearranged to give 36 complete B-blocks. Here are the sets of blocks together with some peals. Most of the peals have already been published as the exact three-part peals from 2017, see Three-part bobs-only peals of Stedman Triples in The Ringing World Issue 5565 p1264 22 December 2017.
There sets of blocks are based on a group of order 3. The blocks have not been normalised by rotation to better show the similarities.
4637251QS----P-----P---------PP--------P-P----PP----PPP--------P-----P---------P-P----PP--PP----PP----PP--PP--------PP--PPPP--PP--PP--P--------P-----PP---P--------P-----P---------P-PPP--PP--PP----PP--PP--P----*3(1)
4637251QS----P-----P---------PP--------P-P----PP--PP----PP--PPPP--PP--PP--P--------P-----PP---P--------P-----P---------P-P----PP--PPPPP--------P-----P---------P-P----PP--PP----PP--------PP--PP----PP--PP--P----*3(1)
4637251QS----P-----P---------P-P----PP----PPP--------P-----P---------P-PPP--PP--------PP----PP--PP--PP----PP--PP--P--------P-----P---------PP--------P-P----PP--PP----PP--PPPP--PP--PP--P--------P-----PP---P----*3(1)
4637251QS----P-----P---------P-PPP--PP--------PP--PP--P--------P-----P---------PP--------P-PPP--PP----PPP--------P-----P---------P-PPP--PP--------PP----PP--PP--------PP--PPPP--PP--PP--P--------P-----PP---P----*3(1)
4637251QS----P-----P---------P-P----PP--PP----PP--------PP--PPPPP--------P-----P---------P-P----PP--PP----PP--PP--P--------P-----P---------PP--------P-P----PP--PP----PP--PPPP--PP--PP--P--------P-----PP---P----*3(1)
4637251QS----P-----P---------P-PPP--PP--------PP--PP--P--------P-----P---------PP--------P-PPP--PP--PP----PP--------PP--PPPPP--------P-----P---------P-P----PP--------PP--PPPP--PP--PP--P--------P-----PP---P----*3(1)
A summary of all those exact three-parts with 36 complete B-blocks:
Number of bobs | Number of peals |
---|---|
603 | 12 |
612 | 96 |
621 | 288 |
630 | 384 |
639 | 192 |
Total | 972 |
These are some irregular blocks, but based on the blocks above.
3467251QS-------PP----P-P---------P-----P--------P--PP--PP----PP--PP----P-P---------P-----P--------PPP----PP----P-P---------P-----P--------P--PP--PP----PP--PP--PPP-P---------P-----P--------P--PP--PP----PP--PP--PPP-P---------P-----P--------P--PP--PP----PP--PP----P-P---------P-----P--------P--PP--PP----PP--PP----P-P---------P-----P--------P--PP--PP--------PP----P-P--------PP---------P-----P--------P--PP--PP----PP--PP----P-P---------P-----P--------P--PP--PP----PP--PP--PPP-P---------P-----P--------P---PP-----P--------P--PP--PP--PPPP--PP--------PP--PP----PP----PP--PP----P-P---------P-----P--------P--PP--PP-*1(1)
4637251QS----P-----P---------P-P----PP--------PP--PP--P--------P-----P---------P-P----PP--PP----PP--PP--P--------P-----P---------PP--------P-P----PP--PP----PP--PPPP--PP--PP--P--------P-----PP---P--------P-----P---------P-P----PP--PP----PP--PP--P--------P-----P---------P-PPP--PP--PP----PP--PP--P--------P-----P---------P-PPP--PP--PP----PP--PP--P--------P-----P---------P-P----PP--------PP--PP--P--------P-----P---------P-P----PP--------PP--PP--P--------P-----P---------P-P----PP--PP----PP----PP--PP--PP----PP--PP--P--------P-----P---------P-P----PP--PP----PP--PP--P--------P-----P---------P-PPP--PP----PPP----*1(1)
4637251QS----P-----PP---P--------P-----PP---P--------P-----P---------PP--------P-PPP--PP--PPPPP--------P-----P---------P-P----PP--PP----PP--PP--P--------P-----P---------PP--------P-P----PP--PPPPP--------P-----P---------PP--------P-P----PP--PPPPP--------P-----P---------PP--------P-P----PP--PP----PP--PPPP--PP--------PP--PP----PP----PP------PPPP--PP--PP--P--------P-----PP---P--------P-----P---------PP--------P-P----PP--PP----PP--PPPP------PP----PP--PPPP--PP--PPPP--PP---PP---PP--------PP---PP---PP--PP----PP--------PP--PPPPP--------P-----PP---P--------P-----PP---P--------P-----P---------P-P----PP----PPP----*1(1)
I have found 272 sets of round blocks which together with some B-blocks exactly cover the extent in an odd number [23 to 33] of round blocks where the sixes can be rearranged to give 24 complete B-blocks. Here are examples of two sets of blocks which give peals.
2314567QS---------P--------P---P-------PP--------PPP---P----PP--------P--P--------PP---PP---------PPPPP--------PP---PP--------PP-PP------P---P-------PPP---P----PP--------P--P--------PP---PP---------PPPPP--------PP---PP--------PP-PP------P----PP--------PP---PP---------PPPPP--------PP---PP--------PP-PP------P---P-------PPP---P----PP--------P--P--------PP---PP---------PPPPP--------PP---PP--------PP-PP------P---P-------PPP---P----PP--------PPP--P----PP--------P--P--------PP---PP---------PPPPP--------PP---PP--------PP-PP------P---P-------PPP---P----PP--------P--P--------PP---PP*1(1)
6451327QS--------PP---PP--------PP---PP*1(1)
2314675QS-----P--P------P--P-*1(1)
2341765QS-----P--P------P--P-*1(1)
6315274QS-----P--P------P--P-*1(1)
2314567QS---------P--------P---P-------PP--------PPP---P----PP--------PPP--P----PP--------P--P--------PP---PP---------PPPPP--------PP---PP--------PP-PP------P----PP--------PP---PP*1(1)
7345126QS---------P--------P---P-------PP--------PPP---P----PP--------PPP--P----PP--------P--P--------PP---PP---------PPPPP--------PP---PP--------PP-PP------P----PP--------PP---PP*1(1)
6351472QS---------P--------P---P-------PP--------PPP---P----PP--------PPP--P----PP--------P--P--------PP---PP---------PPPPP--------PP---PP--------PP-PP------P----PP--------PP---PP*1(1)
6451327QS--------PP---PP--------PP---PP*1(1)
2514376QS--------PP---PP--------PP---PP*1(1)
7145362QS--------PP---PP--------PP---PP*1(1)
2314675QS-----P--P------P--P-*1(1)
2341765QS-----P--P------P--P-*1(1)
6315274QS-----P--P------P--P-*1(1)
These are the 10-part peals of 1995 and 2012 based on group [5.04]. See Bobs-only Stedman Triples made easy, The Ringing World, 11 August 1995, p841, Ringing Theory June 2012 Ringing Theory July 2012 and ‘Stedman Triples and Similar Fascinations’ for the 152 peals. There is nothing new here.
2314567QSPP---PPP--P-P----PPPP--P--P----PP-P--P-PP-PPP--P--PP--P-PPPP--PP--P----PP-PP-P--P-*2(1)
3425167QSPP---PPP--P-P----PPPP--P--P----PP-P--P-PP-PPP--P--PP--P-PPPP--PP--P----PP-PP-P--P-*2(1)
4531267QSPP---PPP--P-P----PPPP--P--P----PP-P--P-PP-PPP--P--PP--P-PPPP--PP--P----PP-PP-P--P-*2(1)
5142367QSPP---PPP--P-P----PPPP--P--P----PP-P--P-PP-PPP--P--PP--P-PPPP--PP--P----PP-PP-P--P-*2(1)
1253467QSPP---PPP--P-P----PPPP--P--P----PP-P--P-PP-PPP--P--PP--P-PPPP--PP--P----PP-PP-P--P-*2(1)
Peals of 438 to 441 bobs
These are based on a bobs-only block from group [5.04], linking in pairs, excluding sixes with 76 behind which then link as B-blocks.
2314567QS-----PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP-PPP--P--PP--P-PPPP--PP--P----PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP---P--P--PP--P-PPPP--PP--P----PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP---P--P--PP--P-PPPP--PP---P-P--PP--P-PPPP--PP--P----PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP-PP*2(1)
2354176QS-----PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP-PP*2(1)
6243517QS---P-P--PP--P-PPPP--PP*2(1)
Peals of 441 to 456 bobs
2314567QS---P--P--PPPP----P-P--PPP---PP-P--P-PP-PP----P--PP--PPPP-P--PP--P--P---PP-P--P-PP----P--P--PPPP----P-P--PPP---PP-P--P-PP-PP----P--PP--PPPP-P--PP--P--PPP-PP-P--P-PP-*2(1)
4527613QS----PP-PP-P--P-PP----P--P--PPPP----P-P--PPP---PP-P--P-PP-PP----P--PP--PPPP-P--PP--P-P---PP--PPPP-P--PP--P--PPP-PP-P--P-PP----P--P--PPPP----P-P--PPP---PP-P--P-PP-PP----P--PP--PPPP-P--PP--P--PPP-PP-P--P-PP----P--P--PPPP----P-P--PPP---PP-P--P-PP-PP-*1(1)
6527431QS----PP-PP-P--P-PP----P--P--PPPP----P-P--PPP---PP-P--P-PP-PP----P--PP--PPPP-P--PP--P-P---PP--PPPP-P--PP--P--PPP-PP-P--P-PP----P--P--PPPP----P-P--PPP---PP-P--P-PP-PP----P--PP--PPPP-P--PP--P--PPP-PP-P--P-PP----P--P--PPPP----P-P--PPP---PP-P--P-PP-PP-*1(1)
Peals of 438 to 450 bobs
2314567QS-----PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP-PPP--P--PP--P-PPPP--PP---P-P--PP--P-PPPP--PP--P----PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP-PP*2(1)
5213647QS---P-P--PP--P-PPPP--PP--P----PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP---P--P--PP--P-PPPP--PP--P----PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP-PPP--P--PP--P-PPPP--PP*1(1)
6243517QS---P-P--PP--P-PPPP--PP--P----PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP---P--P--PP--P-PPPP--PP--P----PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP-PPP--P--PP--P-PPPP--PP*1(1)
1243576QS-------PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP-*1(1)
4213675QS-------PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP-*1(1)
Peals of 444 to 453 bobs
2314567QS-----PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP-PPP--P--PP--P-PPPP--PP---P-P--PP--P-PPPP--PP--P----PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP---P--P--PP--P-PPPP--PP---P-P--PP--P-PPPP--PP--P----PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP-PP*1(1)
2316745QS-----PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP-PPP--P--PP--P-PPPP--PP---P-P--PP--P-PPPP--PP--P----PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP---P--P--PP--P-PPPP--PP---P-P--PP--P-PPPP--PP--P----PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP-PP*1(1)
6213457QS-------PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP-*1(1)
1243576QS-------PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP-*1(1)
4213675QS-------PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP-*1(1)
1263754QS-------PP-PP-P--P-PP---PPP--P-P----PPPP--P--P----PP-P--P-PP-*1(1)
6243517QS---P-P--PP--P-PPPP--PP*2(1)
Peals of 444 to 453 bobs
2314567QS---P--P--PPPP----P-P--PPP---PP-P--P-PP-PP----P--PP--PPPP-P--PP--P--P---PP-P--P-PP----P--P--PPPP----P-P--PPP---PP-P--P-PP-PP----P--PP--PPPP-P--PP--P-P---PP--PPPP-P--PP--P--P---PP-P--P-PP-*2(1)
1327456QS----PP-PP-P--P-PP----P--P--PPPP----P-P--PPP---PP-P--P-PP-PP-*2(1)
4327165QS----PP-PP-P--P-PP----P--P--PPPP----P-P--PPP---PP-P--P-PP-PP-*2(1)
1627543QS-------PP-P--P-PP----P--P--PPPP----P-P--PPP---PP-P--P-PP-PP-*1(1)
4527613QS-------PP-P--P-PP----P--P--PPPP----P-P--PPP---PP-P--P-PP-PP-*1(1)
1475236QS--P-P---PP--PPPP-P--PP*2(1)
4176235QS--P-P---PP--PPPP-P--PP*2(1)
Peals of 447 to 456 bobs
These are the results of ad-hoc searches, and are not comprehensive. A lot of them were obtained by taking an existing peal I had found, keeping some parts fixed and varying other parts.
For example, sometimes I took one peal, bobbed all the Q-sets to get an odd number of round blocks, and kept the paired B-blocks as fixed because paired B-blocks are useful as there are a 6 ways each pair can be expressed, which helps linking everything together, and also if they were variable a search could come up with any of those 6 forms which wouldn’t be significantly different, but would just flood the results.
I then took the remaining sixes and searched to see how many sets of round blocks I could obtain. I might also impose other limits like the total number of bobs (because otherwise the search might just turn up 84 B-blocks), and number of complete B-blocks, and also that any Q-sets should be bobbed (to restrict equivalent solutions). My searches couldn’t easily filter results of odd numbers of round blocks vs even numbers so I had to do that once I had say 1000 results. If I got less than 1000 when the search terminated then I knew I had found all the blocks subject to the conditions. I could then try to link the blocks into a peal, but there would be a free choice of 6 for each of the paired B-blocks. Sometimes if I wanted to reduce the number of bobs I would choose the instances of the paired B-blocks to maximise the number of available Q-sets and then try to link the blocks without changing the types of the B-blocks. I could also try other restrictions such as not allowing 7 bobs in a row, and finding 8 plains in a row.
The number of bobs now ranges from 438 to 456 (existing 10-part peals, including some exact two-parts) and 528 to 711 (one-part peals). The exact three-part peals now range from 603 to 690 bobs. With 84 B-blocks there are 840 bobs, so 123 omits on Q-sets could link those to 2 blocks with 717 blocks. An upper limit on the number of bobs therefore seems to be 714, but that would require a 2 blocks to 1 link with 3 omits, or a 4 blocks to 1 with 6 omits etc. which seems unlikely, so perhaps 711 bobs is the limit.
The 528 bob peal CompLib 86761 has 4 Q-sets which could not be plained without splitting it back into multiple blocks, and there was another peal CompLib 92761 where if all the Q-sets were plained there would be 501 bobs (but multiple blocks), so perhaps a one-part peal using B-blocks can be found with fewer than 528 bobs but I am guessing to achieve fewer than 500 bobs would be hard.
This graph shows the minimum number of bobs found so far in a peal and a possible maximum number of bobs against the number of complete B-blocks.
I found several peals with 8 plains in a row but they can’t be arranged to put all at the start or all at the end of a peal with a normal start; it needs to start or end with a bob, so at best with my peals you can end with 8 plains and a bob, or 7 plains. Perhaps this can be improved on.
CompLib 84174 is interesting as all the bobs come in multiples of 2 (2,4 or 6) except for 18 single bobs, but it is a one-part. The treble does 0,2 or 6 bobs behind. Compare with the exact 3-part from 2017 CompLib 36006, which has 9 runs of 1 bob, 3 runs of 3 bobs and 15 runs of 5 bobs and the 7 does either 2 or 6 bobs behind.
Among the things that didn’t work for me:
There is no bobs-only exact 7-part. There are multiple sets of blocks with a 7-part group with an odd number [5,21,35] of round blocks, but it doesn’t seem possible to link them with bobs or omits. Here are some peals with singles to link the blocks
3124567QS-----PPP--------PP----P---P---------P--------P---------PP---------P---*1(7)
4125367SQ-------P--P------P--*1(7)
4236175SQ----------*1(7)
5316472SQ----------*1(7)
1627354SQ----------*1(7)
3124567QS-----P-------PP-P-----PP--PP---------P--PP-----P-PPP----PP-PP-P-P-P-----P---*7(1)
6421375QS--PP----PP---P---P--------PP*7(1)
4125367SQ-----P*7(1)
1536472QSP-----*7(1)
7165324QSP-PP*7(1)
1234567QS--P--P--------P---------PP-------PP-P---------P--P---PPP--------P---------P-----*1(7)
4267351SQ----------*1(7)
1637452QS----------*1(7)
5316472SQ----------*1(7)
3617254SQ----------*1(7)
There can’t be an exact 6-part bobs-only peal, but the group could generate blocks which link in pairs to give 3 round blocks. When I was working with Dr Michael Haythorpe he ran my program in 2013 and we found the following sets of an odd number of blocks, shown in file odd.txt. Unfortunately I cannot see a way of linking the blocks with just bobs. That’s an especial pity because the set giving 5 round blocks has only 402 bobs.
We also found some single blocks, shown in file single.txt, which when expanded for a peal formed 2 or 6 round blocks (but unfortunately not 3). This shows that the 6-part graph is Hamiltonian. Example peals using singles are here:
As already published, there just one instance (+rotations/reversal) of a single block (actually from the 10-part group, so made of two identical sections), but it links to itself and cannot be linked by Q-sets of bobs or omits.
There are sets of multiple blocks with odd numbers of blocks when expanded to all the rows (e.g. the original 10-part peals) which can be linked with Q-sets of bobs or omits to provide the existing 10-part peals.
The magic blocks appear in a 5-part search, together with the remaining B-blocks, but cannot be linked without changing the type of some of the B-blocks, so there isn’t a 5-part based magic block peal. There might be other sets of an odd number of blocks - I haven’t found them yet.
Not much success here - but the search space gets larger as the groups get smaller. The graph is Hamiltonian, but the example I found, from a 20-part search) divides into 4 1-part blocks. This doesn’t stop there being an exact 4-part out there.
3124567QSP--PP--P---------P--PPP---------P--P--P--P*5(4)
Generators [1543267, 1425376] group order 4
3124567QSP---P---------P--P--P---P--P---------P--PPP---------P--P-----PP--P---------P-----P--P---P---------P--P--P---P--P---------P--PPP---------P--P-----PP--P---------P-----P---PP---------P--P-----PP--P---------P-----P*1(1)
Not directly useful for a bobs-only peal. This is the only group for Stedman Triples where I don’t know whether the reduced graph is Hamiltonian i.e. can a search just turn up one block
Not directly useful for a bobs-only peal. Is a Hamiltonian graph (i.e. search can find one block), but then need 4 of those blocks cover all the sixes.
An in course subgroup of the Thurstans’ 20-part out of course group. Not directly useful for a bobs-only peal. Is a Hamiltonian graph.
Two pairs swapping independently Not directly useful for a bobs-only peal. Is Hamiltonian though, giving this nice peal with singles just swapping 12 or 34 in the parts:
2314567QSP--P-PPP--P-PP-P-P-P-PP--P--P--P---P--P--PP--PP--PP------P--P-PP-P-PPP-P------P-PP------PP-P--PPPPP-P--P-----P--P-P-PP-P--P---P-P--P-P---P--P-P--PP-PPP--------PPP----P-PPP-P-PP---PPP-P----PPP---P--PP---PP------*1(1)
Lots of peals - but too big to search completely. I think I did complete a search choosing 4 pairs of complementary B-blocks and one block with the remaining sixes (200 sixes), anyway it was how I found the 42 and 48 complete B-block exact 3-parts.
Nothing new after the 2012 peals.
One pair swapping. Not directly useful for a bobs-only peal. Is Hamiltonian though, and gives a peal which looks like Slack’s two-part, but comes round half-way if you replace the single with a bob.
Slack’s peal is actually made of 4 blocks and does not come round if you replace the single with a bob or a plain and has more bobs (596 vs 508), so mine is cleaner, but not of the same historical interest.
These are the last of the bobs-only peals for now; I have some unpublished peals but they are not significantly different from the published ones. The collection is here: CompLib ‘Stedman Triples bobs-only peals’.